King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260

Exam I, Semester II, 2011-2012 Tuesday February 28, 2012

Net Time Allowed: 90 minutes (8:30pm-10:00pm)

Name:———		
ID:	Section:	

Q#	Marks	Maximum Marks
1		5
2		5
3		6
4		5
5		4
6		5
7		4
8		4
9		6
10		6
Total		50

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

1. Determine the value(s) of a so that the system

$$-x + y + 2z = a2$$
$$x + 2y - z = 2a$$
$$2x + y - 3z = 1$$

has a solution.

2. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that

$$A^{2} = (a+d)A - (ad - bc)I_{2},$$

where I_2 is the 2×2 identity matrix.

3. Find the inverse of the matrix A or determine that A^{-1} does not exist.

$$A = \left[\begin{array}{ccc} 0 & -2 & 1 \\ 2 & 4 & -1 \\ 2 & 1 & 2 \end{array} \right].$$

4. Evaluate $\begin{vmatrix} b+c & c+a & b+a \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$.

5. If A and B are 4×4 matrices with |A| = 4 and |B| = 5, find $|AB| - |2A^{-1}|$.

6. Write the matrix $A = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix}$ as a product of elementary matrices.

7. What is the inverse of the following elementary matrix?

$$A = \left[\begin{array}{rrr} 1 & 0 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Note: You should think about elementary matrices.

8. Do $x^2 + 1, x^2 + x, x + 1$ span P_2 ?

9. Define two operations on \mathbb{R}^2 by:

$$(x,y) \oplus (a,b) = (x+a,y+b)$$
, for all $(x,y),(a,b) \in \mathbb{R}^2$ and $c \odot (x,y) = (x,cy)$ for all $c \in \mathbb{R}$ and $(x,y) \in \mathbb{R}^2$.

Determine which properties of a vector space fail to hold for (E, \oplus, \odot) .

10. Let
$$W$$
 be the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ in \mathbb{R}^4 such that

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0.$$

Is W a vector subspace of \mathbb{R}^4 ?