<u>Prob. 1</u> (12 pts) Consider the differential equation $x^2y'' + 5xy' + (4-x^2)y = 0$. The indicial equation has repeated roots -2, -2 (no need to check this). Find two linearly independent solutions about x = 0.

<u>Prob.</u> 2 (10 pts) Use matrix exponential technique to solve the system

$$x'(t) = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 3 \\ 1 & 0 & -1 \end{pmatrix} x(t)$$

$\underline{\mathbf{Prob.3}}$ (12 pts)

Prob.3 (12 pts) Solve the problem x' = Ax where $A = \begin{pmatrix} -1 & -5 \\ 10 & 9 \end{pmatrix}$

<u>Prob.4</u> (11 pts) Solve the system $x'(t) = \begin{pmatrix} -1 & 0 & 0 \\ 3 & -1 & 0 \\ 4 & 2 & -1 \end{pmatrix} x(t)$

$\underline{\mathbf{Prob.5}} \ (15 \ \mathrm{pts})$

Find a differential equation whose complementary and particular solutions are $y_c = C_1 e^x + C_2 e^{2x}$ and $y_p = \frac{3}{4} + \frac{1}{2}x - xe^{2x}$, respectively.

<u>Prob.</u> 6 (12 pts) Consider the initial value problem $y' + \frac{x}{x+5}y = \frac{x^2}{x-1}$, y(2) = 0. What is the largest interval on which a unique solution is guaranteed to exist?

(a) $(-5,\infty)$ (b) (-5, 1) $(c)(1, +\infty)$ (d) $[1, +\infty)$ (e) $(-\infty, +\infty)$

<u>Prob.</u> 7 (10 pts) The solution of the initial value problem

$$\left(\frac{x^2}{y^2} + \frac{3x}{y^4}\right)\frac{dy}{dx} = \frac{2x}{y} + \frac{1}{y^3}, \ y(1) = 1$$

is

(a)
$$2x^2y^2 - y^3 - x = 0$$

(b) $2x^2y^2 + y^3 - 3x = 0$
(c) $x^2y^2 + 2y^3 - 3x = 0$
(d) $x^2y^2 - 2y^3 + x = 0$
(e) $x^2y^2 - 3y^3 + 2x = 0$

Prob. 8 (12 pts) A solution of the problem $-ydx + (x + \sqrt{xy})dy = 0$, y(1/4) = 1 satisfies (a) y(-1) = e(b) y(1) = e(c) $y(\sqrt{2}) = e$ (d) $y(\pi) = e$ (e) y(e) = e

<u>Prob. 9</u> (15 pts)

Consider the differential equation $y'' + 4y = \sec 2t \csc 2t$. The general solution of the corresponding homogeneous equation is $y_c = C_1 \cos 2t + C_2 \sin 2t$ (no need to verify this). A particular solution of the non-homogeneous equation would be

(a) $y_p = -\frac{1}{4}\cos 2t \ln|\sec 2t + \tan 2t| + \frac{1}{4}\sin 2t \ln|\csc 2t - \cot 2t|$ (b) $y_p = -\cos^2 2t \ln|\sec 2t + \tan 2t| + \frac{1}{4}\sin^2 2t \ln|\csc 2t - \cot 2t|$ (c) $y_p = -\frac{1}{4}\cos^2 2t \ln|\csc 2 - \cot 2t| + \frac{1}{4}\sin^2 2t \ln|\sec 2t + \tan 2t|$ (d) $y_p = -\cos 2t \ln|\csc 2t - \cot 2t| + \sin 2t \ln|\sec 2t + \tan 2t|$ (e) $y_p = -\ln|\sec 2t + \tan 2t| + \ln|\csc 2t - \cot 2t|$

Prob. 10 (10 pts) Consider the differential equation $(1 - x^2)y'' - 2y' + 3y = 0$. Find the recurrence relation in the process of finding a series solution about $x_0 = 0$.

(a)
$$a_{n+1} = \frac{-4n-5}{-2(n+1)}a_n$$

(b) $a_{n+2} = \frac{n^2-n-3}{(n+2)(n+1)}a_n + \frac{2}{n+2}a_{n+1}$
(c) $a_{n+2} = \frac{-n^2+n+3}{(n+2)(n-1)}a_n - \frac{2}{n+2}a_{n+1}$
(d) $a_{n+2} = \frac{n^2-n-3}{n(n+1)}a_n$
(e) $a_{n+1} = \frac{n^2+n-1}{2(n+1)}a_n$

Prob. 11 (11 pts)

Consider the following non-homogeneous system of differential equations

$$x' = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} x + \begin{pmatrix} 0 \\ -2t^{-3} \end{pmatrix}$$

The general solution of the corresponding system is

$$x_c = C_1 \left(\begin{array}{c} 1\\ 2 \end{array} \right) + C_2 \left(\begin{array}{c} t\\ 2t-1 \end{array} \right)$$

(No need to verify this). Find a particular solution of the non-homogeneous equation $\begin{pmatrix} t^{-1} + \ln t \end{pmatrix}$

a)
$$v(t) = \begin{pmatrix} t^{-1} + \ln t \\ \ln t \end{pmatrix}$$

b)
$$v(t) = \begin{pmatrix} t^{-1} - \ln t \\ t^{-3} + \sqrt{t} \end{pmatrix}$$

c)
$$v(t) = \begin{pmatrix} t^{-1} \\ 2t^{-1} + t^{-2} \end{pmatrix}$$

d)
$$v(t) = \begin{pmatrix} t^{-1} + 2\ln t \\ t^{-3} + \ln t \end{pmatrix}$$

e)
$$v(t) = \begin{pmatrix} t^{-1} + 5\ln t \\ t^{-3} + \ln t \end{pmatrix}$$

<u>Prob. 12</u> (14 pts)

Let f(x) be a function satisfying $f''(x) - 2f'(x) + f(x) = 2e^x$. Which one of the following statement is true

(a) If $f_1(x)$ and $f_2(x)$ are solutions of this equation then $f_1(x) + f_2(x)$ is also a solution of this non-homogeneous equation

(b) This differential equation does not admit any solution

(c) If f(x) > 0 for all x then f'(x) > 0 for all x as well

(d) If $f_1(x)$ and $f_2(x)$ are solutions of this equation then $\frac{f_1(x)}{f_2(x)}$ must also be a solution of this non-homogeneous equation

(e) If f'(x) > 0 for all x then f(x) > 0 for all x as well