KFUPM	Term (112)	Name	Serial#
MATH 202	Quiz # 3	ID#	Section

1) Given that $y = c_1 e^t \sin 2t + c_2 e^t \cos 2t$ is a two-parameter family of solutions of the differential equation

$$y^{\prime\prime} - 2y^{\prime} + 5y = 0$$

Determine whether a member of the family of the solutions of the above differential equation can be found that satisfies the boundary conditions:

$$y(0)=1, \qquad y(\pi)=-1$$

2) Consider the differential equation

$$y'' - 4y' + 4y = 0$$

- (a) Find the interval in which the two solutions $y_1=e^{2x}$ and $y_2=xe^{2x}$ are linearly independent.
- (b) Form a general solution of the differential equation

3) Consider the differential equation

$$y'' + 3y = -18e^{3x} \tag{1}$$

- (a) Verify that $y_1 = \cos\sqrt{3}x$ and $y_2 = \sin\sqrt{3}x$ are solutions of y'' + 3y = 0.
- (b) Find a particular solution of the differential equation (1) of the form $y=Ae^{3x}$
- (c) Write the general solution of the differential equation (1).

4) Solve the initial value problem

$$y''' + y'' - y' - y = 0;$$

$$y''' + y'' - y' - y = 0;$$
 $y(0) = 0, y'(0) = 0, y''(0) = 4$

5) Given that $y = x^2 + 8x + 33$ is a particular solution to the differential equation $y'' + 4y' - y = -x^2 + 1$

And $y=-\frac{1}{4}xe^{-x}+\frac{1}{8}e^{-x}$ is a particular solution to the differential equation $y'' + 4y' - y = xe^{-x} - e^{-x}$

Find a particular solution to the differential equation

$$y'' + 4y' - y = -x^2 + 1 - 2xe^{-x} + 2e^{-x}$$

6) Find the general solution of the differential equation

$$xy'' - y' + 4x^3y = 0$$

Given that $y_1 = \sin(x^2)$ is a solution