KFUPM	Term(112)	Name	Serial #
MATH 201	Quiz # 4(a)	ID#	Section # 06
Time: 20 Minutes			Marks: /8

1. Use Lagrange multipliers method to find the maximum and minimum values of f(x, y) = x - 3y - 1 subject to the constraint $x^2 + 3y^2 = 16$.

2. Use Riemann sum with m = n = 2 and lower left corners as the sample points to approximate values of $\iint_R (x+2y)dA$ over R = [0,1]x[0,1].

KFUPM	Term(112)	Name	Serial #
MATH 201	Quiz # 4(b)	ID#	Section # 06
Time: 20 Minutes			Marks: /8

1. Use Lagrange multipliers method to find 3 positive numbers whose sum is 27 and such that the sum of their squares is as small as possible.

2. Evaluate
$$\iint_{R} \cos(x+2y) dA \text{ over } R = \{(x, y) : 0 \le x \le \pi \text{ and } 0 \le y \le \pi/2\}$$