Q1. (a) Find the point at which the given lines intersect:

$$L_1: \quad x = t, \ y = 2 - t, \ z = -2 + 2t$$
$$L_2: \quad x = 3 - s, \ y = -1 + s, \ z = -2 + s$$

- (b) Find an equation of the plane that contains the lines L_1 and L_2 . [7pts]
- **Q2.** Find and sketch the domain of the function $f(x, y) = \frac{1}{\ln(xy)}$. [5pts]
- **Q3.** Find the linear approximation L(x, y) of the function $f(x, y) = x^2y + \sqrt{x^2 + y^2}$ at the point (1,0) and use it to approximate the value of f(0.98, 0.03). [10pts]

Q4. (a) Let
$$z = \tan^{-1}\left(\frac{x}{y^2}\right)$$
. Find $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ at the point $(x, y) = (-1, -1)$. [5pts]
(b) Let $F(x, y) = x \cos(y) + \sin(xy)$. Find $F_{xyx}(1, \pi/2)$. [6pts]

b) Let
$$F(x, y) = x \cos(y) + \sin(xy)$$
. Find $F_{xyx}(1, \pi/2)$. [6pts]

Q5. Find the absolute maximum and minimum values of $f(x, y) = e^{x^2 y}$ on the closed triangular region with vertices (0, -1), (0, 2) and (1, -1). [13pts]

[5pts]

Q1. Consider the surface

$$x^2z + 3yz^2 + 3xyz = 7$$

Let 5x + By + Cz = D be an equation of the tangent plane to the given surface at (1, 1, 1). The value of B + C + D is equal to

- (A) 39
- (B) 32
- (C) 42
- (D) 36
- (E) 37

Q2. The function $f(x, y) = 2x^{3}y + 3x^{2} + y^{2}$ has

- (A) one saddle point and two local maxima
- (B) one local maximum and two saddle points
- (C) two local minima and one local maximum
- (D) one local minimum and two saddle points
- (E) three saddle points

- **Q3.** Let $T(x, y) = e^{x^2 y^2}$. The function T increases most rapidly at the point (1, 1) in the direction of the vector
 - (A) $\langle 1, -2 \rangle$
 - (B) $\langle 1, -1 \rangle$
 - (C) $\langle -2,1\rangle$
 - (D) $\langle -1,1\rangle$
 - (E) $\langle 1,1\rangle$

Q4. Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable functions and

$$u(1,0) = 2,$$
 $v(1,0) = -3,$ $u_s(1,0) = -2,$ $v_s(1,0) = 5,$
 $u_t(1,0) = -6,$ $v_t(1,0) = 4,$ $F_u(2,-3) = 1,$ $F_v(2,-3) = 3.$

The value of $W_s(1,0) + W_t(1,0)$ is equal to

(A) 19
(B) 22
(C) 21
(D) 20
(E) 18

Q5.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(3x^2+3y^2)}{\sin^2(x^2+y^2)}$$
 is equal to
(A) $\frac{9}{2}$
(B) 3
(C) $\frac{1}{2}$
(D) 2
(E) $\frac{3}{2}$

Q6. Symmetric equations for the line of intersection of the planes z = 2x - y - 5 and z = x + 3y - 1 are

(A) $\frac{x-4}{-2} = y = \frac{z-3}{7}$

(B)
$$\frac{x}{4} = y + 2 = \frac{z+3}{7}$$

- (C) $\frac{x-4}{4} = y = \frac{z-3}{7}$
- (D) $\frac{x}{-2} = y + 2 = \frac{z+3}{7}$
- (E) $\frac{x-4}{4} = -y = \frac{z-3}{7}$

Q7. The equation $-2x^2 - y^2 + z^2 - 2y - 4z - 12x + 5 = 0$ represents

- (A) an ellipsoid
- (B) a hyperboloid of one sheet
- (C) a hyperbolic paraboloid
- (D) a cone
- (E) a hyperboloid of two sheets

Q1.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{\sin^2(2x^2+2y^2)}$$
 is equal to
(A) $\frac{1}{8}$
(B) $\frac{1}{2}$
(C) 2
(D) 1
(E) $\frac{1}{4}$

Q2. Symmetric equations for the line of intersection of the planes z = 2x - y - 5 and z = x + 3y - 4 are

(A)
$$\frac{x-1}{4} = -y = \frac{z+3}{7}$$

(B)
$$\frac{x}{4} = y + 2 = \frac{z+3}{7}$$

- (C) $\frac{x-1}{-2} = y = \frac{z+3}{7}$
- (D) $\frac{x-1}{4} = y = \frac{z+3}{7}$
- (E) $\frac{x}{4} = y + 2 = \frac{z+3}{5}$

Q3. The function $f(x, y) = 2x^{3}y - 3x^{2} - y^{2}$ has

- (A) two local minima and one local maximum
- (B) one saddle point and two local maxima
- (C) one local maximum and two saddle points
- (D) three saddle points
- (E) one local minimum and two saddle points

Q4. Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable functions and

$$u(1,0) = 2,$$
 $v(1,0) = -3,$ $u_s(1,0) = -2,$ $v_s(1,0) = 5,$
 $u_t(1,0) = -6,$ $v_t(1,0) = -4,$ $F_u(2,-3) = 2,$ $F_v(2,-3) = 3.$

The value of $W_s(1,0) + W_t(1,0)$ is equal to

- (A) 16
- (B) -13
- (C) -15
- (D) -12
- (E) -14

Q5. Consider the surface

$$x^2z + 3yz^2 + 3xyz = 7.$$

Let Ax + 6y + Cz = D be an equation of the tangent plane to the given surface at (1, 1, 1). The value of A + C + D is equal to

- (A) 32
- (B) 36
- (C) 42
- (D) 37
- (E) 39

- **Q6.** Let $T(x, y) = e^{x^2 y^2}$. The function T increases most rapidly at the point (-1, -1) in the direction of the vector
 - (A) $\langle -1, -1 \rangle$
 - (B) $\langle 1, -2 \rangle$
 - (C) $\langle -2,1\rangle$
 - (D) $\langle 1, -1 \rangle$
 - (E) $\langle -1,1\rangle$

- (A) a hyperbolic paraboloid
- (B) a hyperboloid of one sheet
- (C) a cone
- (D) an ellipsoid
- (E) a hyperboloid of two sheets

Q1. Symmetric equations for the line of intersection of the planes z = 2x - y - 5 and z = x + 3y - 1 are

(A)
$$\frac{x}{-2} = y + 2 = \frac{z+3}{7}$$

(B) $\frac{x-4}{4} = -y = \frac{z-3}{7}$
(C) $\frac{x-4}{-2} = y = \frac{z-3}{7}$
(D) $\frac{x}{4} = y + 2 = \frac{z+3}{7}$

(E)
$$\frac{x-4}{4} = y = \frac{z-3}{7}$$

Q2. Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable functions and

$$u(1,0) = 2,$$
 $v(1,0) = -3,$ $u_s(1,0) = -2,$ $v_s(1,0) = 5,$
 $u_t(1,0) = -6,$ $v_t(1,0) = 4,$ $F_u(2,-3) = 1,$ $F_v(2,-3) = 3.$

The value of $W_s(1,0) + W_t(1,0)$ is equal to

- (A) 22
- (B) 18
- (C) 19
- (D) 21
- (E) 20

Q3.
$$\lim_{(x,y)\to(0,0)} \frac{1 - \cos(x^2 + y^2)}{\sin^2(2x^2 + 2y^2)}$$
 is equal to
(A) $\frac{1}{4}$
(B) 2
(C) 1
(D) $\frac{1}{8}$
(E) $\frac{1}{2}$

Q4. Let $T(x, y) = e^{x^2 - y^2}$. The function T increases most rapidly at the point (-1, -1) in the direction of the vector

- (A) $\langle -1, 1 \rangle$
- (B) $\langle 1, -2 \rangle$
- (C) $\langle -2,1\rangle$
- (D) $\langle 1, -1 \rangle$
- (E) $\langle -1, -1 \rangle$

- (A) a hyperboloid of one sheet
- (B) a cone
- (C) a hyperboloid of two sheets
- (D) an ellipsoid
- (E) a hyperbolic paraboloid

Q6. Consider the surface

$$x^2z + 3yz^2 + 3xyz = 7.$$

Let Ax + By + 10z = D be an equation of the tangent plane to the given surface at (1, 1, 1). The value of A + B + D is equal to

- (A) 39
- (B) 37
- (C) 42
- (D) 32
- (E) 36

Q7. The function $f(x, y) = 2x^3y + 3x^2 + y^2$ has

- (A) three saddle points
- (B) one local minimum and two saddle points
- (C) two local minima and one local maximum
- (D) one saddle point and two local maxima
- (E) one local maximum and two saddle points

Q1. The function $f(x, y) = 2x^3y - 3x^2 - y^2$ has

- (A) one saddle point and two local maxima
- (B) three saddle points
- (C) one local minimum and two saddle points
- (D) one local maximum and two saddle points
- (E) two local minima and one local maximum

Q2. Let W(s,t) = F(u(s,t), v(s,t)), where F, u and v are differentiable functions and

$$u(1,0) = 2,$$
 $v(1,0) = -3,$ $u_s(1,0) = -2,$ $v_s(1,0) = 5,$
 $u_t(1,0) = -6,$ $v_t(1,0) = -4,$ $F_u(2,-3) = 2,$ $F_v(2,-3) = 3.$

The value of $W_s(1,0) + W_t(1,0)$ is equal to

- (A) -15
- (B) -14
- (C) -13
- (D) -12
- (E) 16

- (A) a hyperboloid of two sheets
- (B) a hyperbolic paraboloid
- (C) a hyperboloid of one sheet
- (D) an ellipsoid
- (E) a cone

Q4. Consider the surface

$$x^2z + 3yz^2 + 3xyz = 7.$$

Let 5x + By + Cz = D be an equation of the tangent plane to the given surface at (1, 1, 1). The value of B + C + D is equal to

(A) 32

(B) 37

- (C) 42
- (D) 36
- (E) 39

Q5.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(3x^2+3y^2)}{\sin^2(x^2+y^2)}$$
 is equal to
(A) $\frac{9}{2}$
(B) 3
(C) $\frac{3}{2}$
(D) 2
(E) $\frac{1}{2}$

- **Q6.** Let $T(x, y) = e^{x^2 y^2}$. The function T increases most rapidly at the point (1, 1) in the direction of the vector
 - (A) $\langle -2,1\rangle$
 - (B) $\langle 1, -2 \rangle$
 - (C) $\langle 1,1\rangle$
 - (D) $\langle -1,1\rangle$
 - (E) $\langle 1, -1 \rangle$

Q7. Symmetric equations for the line of intersection of the planes z = 2x - y - 5 and z = x + 3y - 4 are

(A)
$$\frac{x-1}{4} = -y = \frac{z+3}{7}$$

(B) $\frac{x-1}{4} = y = \frac{z+3}{7}$
(C) $\frac{x}{4} = y + 2 = \frac{z+3}{7}$

(D)
$$\frac{x}{4} = y + 2 = \frac{z+3}{5}$$

(E)
$$\frac{x-1}{-2} = y = \frac{z+3}{7}$$