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Q1. (a) Find the point at which the given lines intersect: [5pts]

L1 : x = t, y = 2− t, z = −2 + 2t

L2 : x = 3− s, y = −1 + s, z = −2 + s

(b) Find an equation of the plane that contains the lines L1 and L2. [7pts]

Q2. Find and sketch the domain of the function f(x, y) =
1

ln(xy)
. [5pts]

Q3. Find the linear approximation L(x, y) of the function f(x, y) = x2y+
√

x2 + y2 at
the point (1, 0) and use it to approximate the value of f(0.98, 0.03). [10pts]

Q4. (a) Let z = tan−1

(
x

y2

)
. Find

∂z

∂x
+
∂z

∂y
at the point (x, y) = (−1,−1). [5pts]

(b) Let F (x, y) = x cos(y)+sin(xy). Find Fxyx(1, π/2). [6pts]

Q5. Find the absolute maximum and minimum values of f(x, y) = ex
2y on the closed

triangular region with vertices (0,−1), (0, 2) and (1,−1). [13pts]
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Q1. Consider the surface
x2z + 3yz2 + 3xyz = 7.

Let 5x+By + Cz = D be an equation of the tangent plane to the given surface
at (1, 1, 1). The value of B + C +D is equal to

(A) 39

(B) 32

(C) 42

(D) 36

(E) 37

Q2. The function f(x, y) = 2x3y + 3x2 + y2 has

(A) one saddle point and two local maxima

(B) one local maximum and two saddle points

(C) two local minima and one local maximum

(D) one local minimum and two saddle points

(E) three saddle points



Major Exam II Part II: 7 MCQ 7pts/each CODE 001 Page 3

Q3. Let T (x, y) = ex
2−y2 . The function T increases most rapidly at the point (1, 1) in

the direction of the vector

(A) ⟨1,−2⟩

(B) ⟨1,−1⟩

(C) ⟨−2, 1⟩

(D) ⟨−1, 1⟩

(E) ⟨1, 1⟩

Q4. Let W (s, t) = F (u(s, t), v(s, t)), where F, u and v are differentiable functions and

u(1, 0) = 2, v(1, 0) = −3, us(1, 0) = −2, vs(1, 0) = 5,

ut(1, 0) = −6, vt(1, 0) = 4, Fu(2,−3) = 1, Fv(2,−3) = 3.

The value of Ws(1, 0) +Wt(1, 0) is equal to

(A) 19

(B) 22

(C) 21

(D) 20

(E) 18
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Q5. lim
(x,y)→(0,0)

1− cos(3x2 + 3y2)

sin2(x2 + y2)
is equal to

(A)
9

2

(B) 3

(C)
1

2

(D) 2

(E)
3

2

Q6. Symmetric equations for the line of intersection of the planes z = 2x− y− 5 and
z = x+ 3y − 1 are

(A)
x− 4

−2
= y =

z − 3

7

(B)
x

4
= y + 2 =

z + 3

7

(C)
x− 4

4
= y =

z − 3

7

(D)
x

−2
= y + 2 =

z + 3

7

(E)
x− 4

4
= −y =

z − 3

7
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Q7. The equation −2x2 − y2 + z2 − 2y − 4z − 12x+ 5 = 0 represents

(A) an ellipsoid

(B) a hyperboloid of one sheet

(C) a hyperbolic paraboloid

(D) a cone

(E) a hyperboloid of two sheets
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Q1. lim
(x,y)→(0,0)

1− cos(x2 + y2)

sin2(2x2 + 2y2)
is equal to

(A)
1

8

(B)
1

2

(C) 2

(D) 1

(E)
1

4

Q2. Symmetric equations for the line of intersection of the planes z = 2x− y− 5 and
z = x+ 3y − 4 are

(A)
x− 1

4
= −y =

z + 3

7

(B)
x

4
= y + 2 =

z + 3

7

(C)
x− 1

−2
= y =

z + 3

7

(D)
x− 1

4
= y =

z + 3

7

(E)
x

4
= y + 2 =

z + 3

5



Major Exam II Part II: 7 MCQ 7pts/each CODE 002 Page 7

Q3. The function f(x, y) = 2x3y − 3x2 − y2 has

(A) two local minima and one local maximum

(B) one saddle point and two local maxima

(C) one local maximum and two saddle points

(D) three saddle points

(E) one local minimum and two saddle points

Q4. Let W (s, t) = F (u(s, t), v(s, t)), where F, u and v are differentiable functions and

u(1, 0) = 2, v(1, 0) = −3, us(1, 0) = −2, vs(1, 0) = 5,

ut(1, 0) = −6, vt(1, 0) = −4, Fu(2,−3) = 2, Fv(2,−3) = 3.

The value of Ws(1, 0) +Wt(1, 0) is equal to

(A) −16

(B) −13

(C) −15

(D) −12

(E) −14
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Q5. Consider the surface
x2z + 3yz2 + 3xyz = 7.

Let Ax+ 6y + Cz = D be an equation of the tangent plane to the given surface
at (1, 1, 1). The value of A+ C +D is equal to

(A) 32

(B) 36

(C) 42

(D) 37

(E) 39

Q6. Let T (x, y) = ex
2−y2 . The function T increases most rapidly at the point (−1,−1)

in the direction of the vector

(A) ⟨−1,−1⟩

(B) ⟨1,−2⟩

(C) ⟨−2, 1⟩

(D) ⟨1,−1⟩

(E) ⟨−1, 1⟩
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Q7. The equation −2x2 − y2 + z2 − 2y − 4z − 12x− 15 = 0 represents

(A) a hyperbolic paraboloid

(B) a hyperboloid of one sheet

(C) a cone

(D) an ellipsoid

(E) a hyperboloid of two sheets
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Q1. Symmetric equations for the line of intersection of the planes z = 2x− y− 5 and
z = x+ 3y − 1 are

(A)
x

−2
= y + 2 =

z + 3

7

(B)
x− 4

4
= −y =

z − 3

7

(C)
x− 4

−2
= y =

z − 3

7

(D)
x

4
= y + 2 =

z + 3

7

(E)
x− 4

4
= y =

z − 3

7

Q2. Let W (s, t) = F (u(s, t), v(s, t)), where F, u and v are differentiable functions and

u(1, 0) = 2, v(1, 0) = −3, us(1, 0) = −2, vs(1, 0) = 5,

ut(1, 0) = −6, vt(1, 0) = 4, Fu(2,−3) = 1, Fv(2,−3) = 3.

The value of Ws(1, 0) +Wt(1, 0) is equal to

(A) 22

(B) 18

(C) 19

(D) 21

(E) 20
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Q3. lim
(x,y)→(0,0)

1− cos(x2 + y2)

sin2(2x2 + 2y2)
is equal to

(A)
1

4

(B) 2

(C) 1

(D)
1

8

(E)
1

2

Q4. Let T (x, y) = ex
2−y2 . The function T increases most rapidly at the point (−1,−1)

in the direction of the vector

(A) ⟨−1, 1⟩

(B) ⟨1,−2⟩

(C) ⟨−2, 1⟩

(D) ⟨1,−1⟩

(E) ⟨−1,−1⟩
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Q5. The equation −2x2 − y2 + z2 − 2y − 4z − 12x− 15 = 0 represents

(A) a hyperboloid of one sheet

(B) a cone

(C) a hyperboloid of two sheets

(D) an ellipsoid

(E) a hyperbolic paraboloid

Q6. Consider the surface
x2z + 3yz2 + 3xyz = 7.

Let Ax+By+10z = D be an equation of the tangent plane to the given surface
at (1, 1, 1). The value of A+B +D is equal to

(A) 39

(B) 37

(C) 42

(D) 32

(E) 36
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Q7. The function f(x, y) = 2x3y + 3x2 + y2 has

(A) three saddle points

(B) one local minimum and two saddle points

(C) two local minima and one local maximum

(D) one saddle point and two local maxima

(E) one local maximum and two saddle points
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Q1. The function f(x, y) = 2x3y − 3x2 − y2 has

(A) one saddle point and two local maxima

(B) three saddle points

(C) one local minimum and two saddle points

(D) one local maximum and two saddle points

(E) two local minima and one local maximum

Q2. Let W (s, t) = F (u(s, t), v(s, t)), where F, u and v are differentiable functions and

u(1, 0) = 2, v(1, 0) = −3, us(1, 0) = −2, vs(1, 0) = 5,

ut(1, 0) = −6, vt(1, 0) = −4, Fu(2,−3) = 2, Fv(2,−3) = 3.

The value of Ws(1, 0) +Wt(1, 0) is equal to

(A) −15

(B) −14

(C) −13

(D) −12

(E) −16
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Q3. The equation −2x2 − y2 + z2 − 2y − 4z − 12x+ 5 = 0 represents

(A) a hyperboloid of two sheets

(B) a hyperbolic paraboloid

(C) a hyperboloid of one sheet

(D) an ellipsoid

(E) a cone

Q4. Consider the surface
x2z + 3yz2 + 3xyz = 7.

Let 5x+By + Cz = D be an equation of the tangent plane to the given surface
at (1, 1, 1). The value of B + C +D is equal to

(A) 32

(B) 37

(C) 42

(D) 36

(E) 39
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Q5. lim
(x,y)→(0,0)

1− cos(3x2 + 3y2)

sin2(x2 + y2)
is equal to

(A)
9

2

(B) 3

(C)
3

2

(D) 2

(E)
1

2

Q6. Let T (x, y) = ex
2−y2 . The function T increases most rapidly at the point (1, 1) in

the direction of the vector

(A) ⟨−2, 1⟩

(B) ⟨1,−2⟩

(C) ⟨1, 1⟩

(D) ⟨−1, 1⟩

(E) ⟨1,−1⟩
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Q7. Symmetric equations for the line of intersection of the planes z = 2x− y− 5 and
z = x+ 3y − 4 are

(A)
x− 1

4
= −y =

z + 3

7

(B)
x− 1

4
= y =

z + 3

7

(C)
x

4
= y + 2 =

z + 3

7

(D)
x

4
= y + 2 =

z + 3

5

(E)
x− 1

−2
= y =

z + 3

7


