KFUPM – Department of Mathematics and Statistics – Term 112 **MATH 102**

QUIZ # 2 Code 1 (Duration = 20 minutes)

NAME:	ID:	Section:
Exercise 1 (5 points)		
Find the volume of the solid obtained by	by rotating the region enclosed by	the curves $y = x^3$ and $y = x^2$
about the line $y = 2$.		

Exercise 2 (5 points)

Find the area between the curves $y = x^2 + 1$, $y = \frac{1}{\sqrt{x}}$, y = 2 and y = 3 (show all your steps)

KFUPM – Department of Mathematics and Statistics – Term 112 MATH 102 QUIZ # 2 Code 2 (Duration = 20 minutes)

NAME:	ID:	Section:
Exercise 1 (5 points)		
Find the area between the curves $y = x^2 + 2$	2, $y = \frac{1}{\sqrt{x}}$, $y = 2$ and	y = 3 (show all your steps)

Exercise 2 (5 points)

Find the volume of the solid obtained by rotating the region enclosed by the curves $y = x^3$ and $y = x^2$ about the line y = -2.