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. Th i
1 ¢ series ngl —

(a) is divergent

(b) converges by the integral test

(c) converges by the limit comparison test
(d} converges to %

(e) diverges by the ratio test

eVsinz ong ¢
2. f—
Vsinz

dz =

(a) 2ex/sinw+c

(b) 5+ C

28\/sin:r

C
vsin x +

(c)

@) 3% 40

(e) 46\/sinm+c
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4 6 8 10 }

3. The sequence {3, I

2
(a) converges to 3

2
(b) converges to %
(c) converges to 0

1
(d) converges to 3

(e} 1is divergent
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6.  The sum of the series }_

n=1

@ .
) ;

€ -5
@ -

foﬁ(cosm + sinz)? cos 2z dx =

(_2)n+1 ]
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7.

00 1 n
The series > (%ﬂ) is

n=1

(a) convergent
(b) a series with which the root test is not applicable

(c) divergent by the root test
o0
(d) divergent with comparison with 3~ —

n=1 V7

(e) divergent by the integral test.

If we use the Maclaurin series for sin z, then the sum of the

. 1 7r+ 1 (71')3 1(71’)5_'_ "
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9.

10.

f rsec’(3z) dr =

(a) %z tan(3z) — %ln | sec(3z)| + C
(b) 3ztan(3z) + % In|sec(3z)| + C

(c) é:ﬁ tan(3z) + C

1 1,
(d) gtan(Sx) +5% +C

(e) %:c tan(3z) — %ln |secz| + C

The volume of the solid generated by rotating the region
bounded by the graphs of ¥y = cosz and ¥ = 0 from

x=%to:c=—;ab0utthelinea:=
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T,
3 is equal to



Math 102 Final Exam Term 112 Page 6 of 14

11.

12.

dx =

T
/\/8—256-—1.'2

(a) —sin”! (:r—:;-l) —V8-2z—x2+C

(b) —%Sin“1 (m—; 1) —-3V8—-2r—x2*+C

(c) —3sin”! (:r:-; 1) - %\/8 —2z—22+C

sin™}(z + 1)

(@ VB—2z—%°
(&) —V8-2r—22sin™'(z+1)+C

+C

_cos*(n?+1)

o0
Ha, = then the series Y a, is

(n+ 172

(a) convergent by the comparison test
(b) divergent by the comparison test
(c) convergent because lim a, =0

(d) divergent because lim a, # 0

(e) a convergent geometric series.
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z+1
B o=
1 —1\?
(a) ——+ln($ ) +C
T

14.

() —=+In| = +C
() In(@*vVz-1)+C

1832
(d) *+1n (m 1) +C
T N I

(e) -i-+1n(\/;T1)+c

xX
If {S,,} is the sequence of partial sums of the series )

then lim Sn

(a) 1is equal to 3
(b) isequal tol

1
(¢) isequal to 3

(d) isequal to 0

(e) does not exist
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15.

16.

oC
The series >

The length of the curve y =3 —Incosz ,0 <z < g, is

(a)
(b)
(c)
(d)
(e)

(=1)m+
m1vn+2-1
converges conditionally
converges absolutely

diverges

converges by the integral test

diverges by the ratio test

In(2 + v3)
3+ 1n(2 + V3)
3—1In(2+v3)
2+1n3

Inv3
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17.  The interval of convergence of the power series i (=3)" \E/mﬁ +1)?
is -
o (44
o [+
o (3
o (3
o (4

Z dx
° anz, o 3 —2sinx + 5coszx
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19.  The area of the region bounded by the graphs of
y=Inz, z+y =1, and the line y = 1, is equal to

- nr1 R +1
20. The series ngl(—l) + —(—371—-2

(a) converges absolutely

(b) converges conditionally

(c) diverges by the test for divergence
(d) diverges by the ratio test

(e) converges by the integral test.
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21.

22.
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* nl
If the ratio test is applied to the series >_ —, then the

ne=1 Tt
value of the limit L found by the ratio test

1
(a) is equal to A
(b) isequaltoe
() isoo

(d) isequaltol

(e) is equal to 0.

The area of {:he surface generated by rotating the curve
1 :

y = Za:4 + 52’ 1 < z <€ 2, about the y-axis, is given by

the integral

@ [on (o4 ;) do
©) fon (st 4 50)
© flon(st+ ) da
@ frrle- e
© [om(at- ) do
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1
23.  If we use the Maclaurin series for f(z) = T then the
‘ 2
Maclanrin series for g(z) = m is [Hint : You may use differentiation]

(8) 3 2*(n+ 1)

n=0

b) 3 272(n+ e

n=0

(c) i 2°(n + 1)z™*!

n=0

o0

(d) 3 2(n+1)z"

n=0

(e) i 2nz”
n=0

dr
% mwEe
(a) 4¥z—4ln(yz+1)+C
(b) 2¢z+4ln(vz+1)+C
(¢) 4¢z—2In(vyz+1)+C

(@) 1 (‘/_+ 1) +C

\/_
(e) 1n(\/_‘/_1) +C
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25. Ifkis a positive real number such that the improper integral
X

e € . s
[ — dz is divergent, then
1 g :
(a)} k is any positive real number.
(b) k> 1only
(c) 0<k<1only
(d) k> 2only

(e) 1<k<2only.

3
26. If f' is continuous, f(6) = —2, and /; zf'(10 — z%)dz = 4,
then f(1) =
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27.

28.

If n is the smallest number of terms that are required to
o0

, 3 . I
ensure that the sum of the series »_ py is accurate within
n=]

0.004, then 3n + 2 =
[ You may use v/2 ~ 1.26]

The Taylor series for f(z) = e?~" centered at a = 2, is

n=0

2—ﬂ

"n—'(l' - 2)n

2" n
Y
%;!E(I _ 2)n+1
(x—2)™"

n!

2™ +1

(n+ 1)!(w -2
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