King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 102
Final Exam
Term 112
Monday 21/05/2012
Net Time Allowed: 180 minutes

MASTER VERSION

- 1. The series $\sum_{n=1}^{\infty} \frac{n}{5n-1}$
 - (a) is divergent
 - (b) converges by the integral test
 - (c) converges by the limit comparison test
 - (d) converges to $\frac{1}{5}$
 - (e) diverges by the ratio test

$$2. \qquad \int \frac{e^{\sqrt{\sin x}} \cos x}{\sqrt{\sin x}} dx =$$

(a)
$$2e^{\sqrt{\sin x}} + C$$

(b)
$$-\frac{1}{2}e^{\sqrt{\sin x}} + C$$

(c)
$$\frac{2e^{\sqrt{\sin x}}}{\sqrt{\sin x}} + C$$

(d)
$$\frac{1}{4}e^{\sqrt{\sin x}} + C$$

(e)
$$4e^{\sqrt{\sin x}} + C$$

- 3. The sequence $\left\{\frac{4}{5}, \frac{6}{8}, \frac{8}{11}, \frac{10}{14}, \ldots\right\}$
 - (a) converges to $\frac{2}{3}$
 - (b) converges to $\frac{2}{5}$
 - (c) converges to 0
 - (d) converges to $\frac{1}{3}$
 - (e) is divergent

- $4. \qquad \int_0^1 \frac{4^x + 1}{2^x} dx =$
 - (a) $\frac{3}{\ln 4}$
 - (b) $\frac{5}{\ln 2}$
 - (c) $\frac{5}{\ln 4}$
 - (d) $\frac{2}{\ln 2}$
 - (e) $\frac{1}{\ln 4}$

- 5. $\int_0^{\frac{\pi}{12}} (\cos x + \sin x)^2 \cos 2x \ dx =$
 - (a) $\frac{5}{16}$
 - (b) $\frac{9}{4}$
 - (c) $\frac{3}{16}$
 - (d) $\frac{3}{8}$
 - (e) $\frac{1}{16}$

- 6. The sum of the series $\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{3^{2n+1}}$ is
 - (a) $\frac{4}{33}$
 - (b) $\frac{4}{9}$
 - (c) $-\frac{4}{9}$
 - (d) $-\frac{2}{33}$
 - (e) $\frac{4}{11}$

- 7. The series $\sum_{n=1}^{\infty} \left(\frac{4+5 \ln \sqrt{n}}{\sqrt{n}+7} \right)^n$ is
 - (a) convergent
 - (b) a series with which the root test is not applicable
 - (c) divergent by the root test
 - (d) divergent with comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
 - (e) divergent by the integral test.

- 8. If we use the Maclaurin series for $\sin x$, then the sum of the series $\frac{1}{6} \frac{\pi}{6} + \frac{1}{3!} \left(\frac{\pi}{6}\right)^3 \frac{1}{5!} \left(\frac{\pi}{6}\right)^5 + \dots$ is
 - (a) $-\frac{1}{3}$
 - (b) $-\frac{1}{6}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{1}{3}$
 - (e) $-\frac{2}{3}$

$$9. \qquad \int x \sec^2(3x) \ dx =$$

- (a) $\frac{1}{3}x\tan(3x) \frac{1}{9}\ln|\sec(3x)| + C$
- (b) $3x \tan(3x) + \frac{1}{3} \ln|\sec(3x)| + C$
- (c) $\frac{1}{6}x^2\tan(3x) + C$
- (d) $\frac{1}{3}\tan(3x) + \frac{1}{2}x^2 + C$
- (e) $\frac{1}{6}x\tan(3x) \frac{1}{9}\ln|\sec x| + C$

- 10. The volume of the solid generated by rotating the region bounded by the graphs of $y = \cos x$ and y = 0 from $x = \frac{\pi}{2}$ to $x = \frac{3\pi}{2}$ about the line $x = \frac{\pi}{2}$ is equal to
 - (a) $2\pi^2$
 - (b) $\frac{3}{2}\pi^2$
 - (c) $4\pi^2$
 - (d) π^2
 - (e) $\frac{1}{2} + \pi^2$

$$11. \qquad \int \frac{x}{\sqrt{8-2x-x^2}} \ dx =$$

(a)
$$-\sin^{-1}\left(\frac{x+1}{3}\right) - \sqrt{8-2x-x^2} + C$$

(b)
$$-\frac{1}{3}\sin^{-1}\left(\frac{x+1}{3}\right) - 3\sqrt{8-2x-x^2} + C$$

(c)
$$-3\sin^{-1}\left(\frac{x+1}{3}\right) - \frac{1}{3}\sqrt{8-2x-x^2} + C$$

(d)
$$-\frac{\sin^{-1}(x+1)}{\sqrt{8-2x-x^2}} + C$$

(e)
$$-\sqrt{8-2x-x^2}\sin^{-1}(x+1)+C$$

12. If
$$a_n = \frac{\cos^4(n^2 + 1)}{(n+1)^{3/2}}$$
, then the series $\sum_{n=1}^{\infty} a_n$ is

- (a) convergent by the comparison test
- (b) divergent by the comparison test
- (c) convergent because $\lim_{n\to\infty} a_n = 0$
- (d) divergent because $\lim_{n\to\infty} a_n \neq 0$
- (e) a convergent geometric series.

$$13. \qquad \int \frac{x+1}{x^3 - x^2} \ dx =$$

(a)
$$\frac{1}{x} + \ln\left(\frac{x-1}{x}\right)^2 + C$$

(b)
$$-\frac{1}{x} + \ln\sqrt{\frac{x-1}{x}} + C$$

(c)
$$\ln(x^2\sqrt{x-1}) + C$$

(d)
$$\frac{1}{x} + \ln \left(\frac{x-1}{x}\right)^{3/2} + C$$

(e)
$$\frac{1}{x} + \ln\left(\frac{x}{\sqrt{x-1}}\right) + C$$

- 14. If $\{S_n\}$ is the sequence of partial sums of the series $\sum_{n=2}^{\infty} \frac{2}{n^2 1}$, then $\lim_{n \to \infty} S_n$
 - (a) is equal to $\frac{3}{2}$
 - (b) is equal to 1
 - (c) is equal to $\frac{1}{2}$
 - (d) is equal to 0
 - (e) does not exist

15. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+2}-1}$$

- (a) converges conditionally
- (b) converges absolutely
- (c) diverges
- (d) converges by the integral test
- (e) diverges by the ratio test

- 16. The length of the curve $y = 3 \ln \cos x$, $0 \le x \le \frac{\pi}{3}$, is
 - (a) $\ln(2 + \sqrt{3})$
 - (b) $3 + \ln(2 + \sqrt{3})$
 - (c) $3 \ln(2 + \sqrt{3})$
 - (d) $2 + \ln 3$
 - (e) $\ln \sqrt{3}$

- 17. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-3)^n (x+1)^n}{\sqrt[3]{n}}$ is
 - (a) $\left(-\frac{4}{3}, -\frac{2}{3}\right]$
 - (b) $\left[-\frac{4}{3}, -\frac{2}{3} \right)$
 - (c) $\left(-\frac{4}{3}, -\frac{2}{3}\right)$
 - (d) $\left(-\frac{1}{3}, \frac{1}{3}\right]$
 - (e) $\left(-\frac{1}{3}, \frac{1}{3}\right)$

- 18. If $t = \tan \frac{x}{2}$, then $\int \frac{dx}{3 2\sin x + 5\cos x} =$
 - (a) $\int \frac{1}{4 2t t^2} dt$
 - (b) $\int \frac{2}{6-5t+7t^2} dt$
 - (c) $\int \frac{1}{8-2t+4t^2} dt$
 - (d) $\int \frac{8}{4-2t-t^2} dt$
 - (e) $\int \frac{1}{4+2t-3t^2} dt$

- 19. The area of the region bounded by the graphs of $y = \ln x$, x + y = 1, and the line y = 1, is equal to
 - (a) $e \frac{3}{2}$
 - (b) $2 \ln 2 \frac{1}{2}$
 - (c) $2e \frac{5}{2}$
 - (d) $1 \ln 2$
 - (e) e-2

- 20. The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n(n+1)}{3^n}$
 - (a) converges absolutely
 - (b) converges conditionally
 - (c) diverges by the test for divergence
 - (d) diverges by the ratio test
 - (e) converges by the integral test.

- 21. If the ratio test is applied to the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$, then the value of the limit L found by the ratio test
 - (a) is equal to $\frac{1}{e}$
 - (b) is equal to e
 - (c) is ∞
 - (d) is equal to 1
 - (e) is equal to 0.

- 22. The area of the surface generated by rotating the curve $y = \frac{1}{4}x^4 + \frac{1}{8x^2}$, $1 \le x \le 2$, about the y-axis, is given by the integral
 - (a) $\int_{1}^{2} 2\pi \left(x^4 + \frac{1}{4x^2}\right) dx$
 - (b) $\int_1^2 2\pi \left(x^4 + \frac{1}{x^4}\right) dx$
 - (c) $\int_{1}^{2} 2\pi \left(x^{4} + \frac{1}{4x^{3}}\right) dx$
 - (d) $\int_{1}^{2} 2\pi \left(x^{4} \frac{1}{4x^{4}}\right) dx$
 - (e) $\int_{1}^{2} 2\pi \left(x^{4} \frac{1}{4x^{3}}\right) dx$

23. If we use the Maclaurin series for $f(x) = \frac{1}{1-2x}$, then the Maclanrin series for $g(x) = \frac{2}{(1-2x)^2}$ is [Hint: You may use differentiation]

(a)
$$\sum_{n=0}^{\infty} 2^{n+1}(n+1)x^n$$

(b)
$$\sum_{n=0}^{\infty} 2^{n+2}(n+1)x^{n-1}$$

(c)
$$\sum_{n=0}^{\infty} 2^n (n+1) x^{n+1}$$

(d)
$$\sum_{n=0}^{\infty} 2(n+1)x^n$$

(e)
$$\sum_{n=0}^{\infty} 2nx^n$$

$$24. \qquad \int \frac{dx}{\sqrt{x}(\sqrt[4]{x}+1)} =$$

(a)
$$4\sqrt[4]{x} - 4\ln(\sqrt[4]{x} + 1) + C$$

(b)
$$2\sqrt[4]{x} + 4\ln(\sqrt[4]{x} + 1) + C$$

(c)
$$4\sqrt[4]{x} - 2\ln(\sqrt[4]{x} + 1) + C$$

(d)
$$\ln\left(\frac{\sqrt[4]{x}+1}{\sqrt[4]{x}}\right)^2 + C$$

(e)
$$\ln\left(\frac{\sqrt[4]{x}}{\sqrt[4]{x}+1}\right)^2 + C$$

- 25. If k is a positive real number such that the improper integral $\int_{1}^{\infty} \frac{e^{x^{k}}}{x^{1-k}} dx$ is **divergent**, then
 - (a) k is any positive real number.
 - (b) k > 1 only
 - (c) 0 < k < 1 only
 - (d) k > 2 only
 - (e) 1 < k < 2 only.

- 26. If f' is continuous, f(6) = -2, and $\int_2^3 x f'(10 x^2) dx = 4$, then f(1) =
 - (a) -10
 - (b) 6
 - (c) -12
 - (d) 1
 - (e) -3

- 27. If n is the smallest number of terms that are required to ensure that the sum of the series $\sum_{n=1}^{\infty} \frac{3}{n^4}$ is accurate within 0.004, then 3n+2=[You may use $\sqrt[3]{2} \approx 1.26$]
 - (a) 23
 - (b) 21
 - (c) 19
 - (d) 17
 - (e) 15

- 28. The Taylor series for $f(x) = e^{\frac{x}{2}-1}$ centered at a = 2, is
 - (a) $\sum_{n=0}^{\infty} \frac{2^{-n}}{n!} (x-2)^n$
 - (b) $\sum_{n=0}^{\infty} \frac{2^n}{(n+1)!} (x-2)^n$
 - (c) $\sum_{n=0}^{\infty} \frac{2^{-n}}{n!} (x-2)^{n+1}$
 - (d) $\sum_{n=0}^{\infty} \frac{(x-2)^{-n}}{n!}$
 - (e) $\sum_{n=0}^{\infty} \frac{2^{-n}}{(n+1)!} (x-2)^{n+1}$