KING FAHD UNIVERSITY OF PETROLEUM AND MINERAL

Department of Mathematical Sciences

Final Exam	Μ	ATH - 521	Sem 111
Student #:	Name:		

Show All Your Work. No Credits for Answers Not Supported by Work.

Q1) (10 Points) Give complete definition of each of the following:

- a. Path connected space
- b. Lindelof space
- c. Countably compact
- d. Heine –Borel Theorem
- e. Completely normal space

Q2) (40 Points) Give an example of each of the following and describe it in few lines.

- (a) A topological space which is not metrizable.
- (b) A non-empty closed set with no limit points.
- (c) A continuous function which is not uniformly continuous.
- (d) A first countable space which is not second countable.
- (e) A Housdorff space which is not regular.
- (f) A regular space which is not T_1 .
- (g) The intersection of two compact sets which is not compact.
- (h) A closed bounded subset of a metric space which is not compact.
- (i) Separable space which is not second countable.
- (j) Compact space which is not locally compact.

Q3) (70 Points) Prove only 7 problems.

- 1. If (X_i, \mathfrak{I}_i) is Housdorff space for each $i = 1, 2, 3, \dots, n$, prove that $\prod_{i=1}^n X_i$ is Housdorff.
- 2. Let (X, \mathfrak{I}) be Housdorff space and let *F* be a compact subset of *X*. If a point $x \in X$ is not in *F*, then there exist disjoint open sets *U* and *V* such that $x \in U$ and $F \subseteq V$.
- 3. Every compact subspace of a Housdorff space is closed.
- 4. A 1-1 continuous mapping from a compact space into a Housdorff space is homeomorphism.
- 5. Every separable metric space is second countable.
- 6. In a first countable space X, if a point x is a limit point of a subset A of X, then there exists a sequence in $A \{x\}$ which converges to x.
- 7. If a space contains a connected dense subset then it must be connected.
- 8. Let X be T_1 countably compact space. Prove that each infinite subset of X has at least one limit point in X.
- 9. Every path connected space is connected.