King Fahd University of Petroleum and Minerals MATH 430 (Semester 111), Exam I

October 20, 2011

Exercise 1

- 1. Find the four zeros of $z^4 + 4$. Use those zeros to factor $z^4 + 4$ into quadratic factors with reals coefficients.
- **2.** Find the roots of the equation $z^2 + 2z + (1+i) = 0$.

Exercise 2

Let u and v denote the real and imaginary components of the function defined by

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & \text{when } z \neq 0\\ 0 & \text{when } z = 0 \end{cases}$$

- **1.** Find u(x, y) and v(x, y).
- **2.** Verify that f satisfies the Cauchy-Riemann equations at the origin (0, 0).
- **3.** Show that f'(0) does not exist.

Exercise 3

1. Let the function $f(z) = u(r, \theta) + i v(r, \theta)$ be defined throughout some neighborhood of $z_0 = r_0 e^{i\theta_0}$. Show that the Cauchy-Riemann equations can be written in the polar form

$$r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$$
, $\frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}$ at (r_0, θ_0)

and $f'(z_0) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right)$ where the right-hand side is evaluated at (r_0, θ_0) .

2. Let $f(z) = e^{-\theta} \cos(\ln r) + ie^{-\theta} \sin(\ln r)$ $(r > 0 \text{ and } 0 < \theta < 2\pi)$

- (a) Show that f is analytic in the indicated domain.
- (b) Express f'(z) as a function of z.

Exercise 4

- 1. Find the harmonic conjugate of $u(x, y) = y^3 3x^2y$.
- **2.** Write the corresponding analytic function in terms of z.