King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 321 Final Exam

Term 111

Full name:	• • • • • • • • • • • • • • • • • • • •	•••••	
ID Number:	• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Total
Number														
Total	14	6	6	8	8	13	10	10	10	5	6	14	15	125
Your														
Mark														

1- let
$$f(x) = x^3 - 3x + 2$$

- (a) Find the zeros of f .
- (b) Use the Newton Raphson Method to find $P_1,\,P_2$ and P_3 starting with $P_0=1.2$.
- (c) Use Accelerated Newton Raphson method to find $P_1,\,P_2$ and $\ P_3$ starting with $P_0=1.2$.
- (d) What is your conclusion?
- 2- Consider the system Ax = b where $A = \begin{bmatrix} 3 & a & 2 \\ -1 & 2 & b \\ 9 & 2 & 12 \end{bmatrix}$ and a and b are non negative integers.

Find a and b such that Jacobi or Gauss-Seidel iterations will converge starting with any initial iteration.

- 3- Let $f\left(x\right)$ be a polynomial of degree $\leq N$. Let $P_{\scriptscriptstyle N}\left(x\right)$ be the Lagrange polynomial of degree $\leq N$ based on the N+1 nodes $x_{\scriptscriptstyle 0},\ x_{\scriptscriptstyle 1},\ \dots,x_{\scriptscriptstyle N}$. Show that $f\left(x\right)=P_{\scriptscriptstyle N}\left(x\right)$ for all x .
- 4- Find a bound on the maximum error $\left(\left|E_{2}\left(x\right)\right|\right)$ on the interval $\left[0,\pi\right]$, when the Newton interpolating Polynomial $P_{2}\left(x\right)$ is used to approximate $f\left(x\right)=\cos\left(\pi x\right)$ at the centers $x_{0}=0,\ x_{1}=\frac{\pi}{2}\ \mathrm{and}\ x_{2}=\pi$.
- 5- a) Carry out the change of variables and constants X=xy, Y=y, $C=-\frac{1}{A}$ and $D=-\frac{B}{A}$ to derive the linearized form Y=AX+B for the function $y=\frac{D}{x+C}$.
 - b) Carry out the change of variables and constants X=x , $Y=\ln\left(\frac{y}{x}\right)$, $C=e^B$ and

D=-A to derive the linearized form Y=AX+B for the function $y=Cxe^{-Dx}$.

- 6- Let $f(x) = \cos x$
 - (a) Write the Formulas for
 - I. Centered Formula of order $O(h^2)$.
 - II. Centered Formula of order $O\left(h^4\right)$.
 - (b) Use I and II with step size h=0.01 to calculate approximations for f'(0.8).
 - (c) Find the absolute errors of using I and II.
 - (d) Use Richardson's Extrapolation to find the approximate formulas of order $O\left(h^6\right)$ and $O\left(h^8\right)$ in terms of the previous formulas.
- 7- Derive the formula $f''(x_0) \approx \frac{2f_0 5f_1 + 4f_2 f_3}{h^2}$.

 $\text{Hint: Start with the Lagrange Polynomial for } f\left(t\right) \text{based on the four points } x_0, \ x_1, \ x_2 \ \text{and} \ x_3.$

8- Determine the degree of precision of Simpson's $\frac{3}{8}$ rule.

Hint: You may apply Simpson's $\frac{3}{8}$ rule over the interval $\left[0,3\right]$.

- 9- a) Approximate $\int\limits_0^4 x^2 e^{-x} dx$ using the composite trapezoidal rule with M=10 .
 - b) Approximate the same integral using the composite Simpson rule with $M\,=\,\!5$.
- 10- Determine the smallest integer k for which $\int_{0}^{2} 10x^{9} dx = R(k,k)$.
- 11- Derive the Recursive Boole Rule using Romberg Integration starting with $R\left(J,0\right)$ = $T\left(J\right)$ where $T\left(J\right)$ = $T\left(f,h\right)$ is the sequential Trapezoidal Rule.
- 12- Consider the initial Value Problem (IVP):

$$\frac{dy}{dt} = -ty, \qquad t \in [0,1] \text{ with } y(0) = 1$$

- a) Show that IVP has a unique solution.
- b) Find the exact solution of the given IVP.
- c) Use Euler method to solve the given IVP using step size of length $h = \frac{1}{3}$.
- d) Compute the absolute error between the exact solution and the Euler solution with the step size h .
- 13- Use the Runge-Kutta Method of order 4 to solve the IVP

$$\frac{dy}{dt} = \frac{t - y}{2}, \qquad t \in [0,3] \text{ with } y(0) = 1$$
using step size of length $h = 1$.