King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 321 Second Exam

Term 111

Full	nam	e:	••••	• • • •	• • •	•••	•••	•••	•••	•••	•••	• • •	• • •	•••	••	•••	••	• •
ID N	Numb	er:.	• • • • •	• • • •		•••	•••	•••		•••		•••	•••			•••		

Question	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Total
Number								
Total	10	10	10	10	10	10	10	70
Your								
Mark								

1- (10 points) Consider the system

$$4x - y = 15$$
$$x + 5y = 9$$

- (a) Start with $P_0=0$ and use Jacobi iteration to find P_k for $k=1,\,2,\,3$. Will Jacobi iteration converges to the solution?
- (b) Start with $P_0=0$ and use Gauss-Seidel iteration to find P_k for $k=1,\,2,\,3$. Will Gauss-Seidel iteration converges to the solution?
- (c) Discuss the convergence in a) and b) above. WHY?

- 2- (10 points) Let $f(x) = (2+x)^{\frac{1}{2}}$.
- (a) Find the Taylor Polynomial $P_{\rm 3}\left(x\right)$ expanded about $x_{\rm 0}=2$.
- (b) Use $P_3(x)$ to find an approximation to $3^{\frac{1}{2}}$.
- (c) Find the maximum value of $\left|f^{(4)}(c)\right|$ on the interval $1 \le c \le 3$ and find a bound for $\left|E_3(x)\right|$.

- 3- (10 points) Let $f(x) = x + \frac{2}{x}$.
 - (a) Use cubic Lagrange interpolation based on the nodes $x_0=0.5$, $x_1=1$, $x_2=2$ and $x_3=2.5$ to approximate $f\left(1.5\right)$.
 - (b) Determine the error bounds for the cubic Lagrange interpolation in (a).

- 4- (10 points) Given the function $f(x) = x^{\frac{1}{2}}$ and the nodes $\{4, 5, 6, 7\}$
 - (a) Compute the divided-difference table for the function $f\,$ at these nodes.
 - (b) Write down the Newton Polynomials $P_2 \left(x \right)$ and $P_4 \left(x \right)$.
 - (c) Evaluate the Newton Polynomials in part (b) at $\,x\,=4.5$.
 - (d) Compute the absolute and relative errors for the values obtained in part (c).

5- (10 points) For the date

x_k	y ,	$f(x_k)$
-2	1	1.2
-1	2	1.9
0	3	2.6
1	3	3.3
2	4	4.0

Find the least-squares line y = Ax + B for the data and calculate the root-mean square error of f

6- (10 points) For the date, use linearization to find the least-squares curve:

x_k	y_k
1	0.6
2	1.9
3	4.3
4	7.6
5	12.6

- a) $f(x) = Ce^{Ax}$, by using the change of variables X = x , $Y = \ln(y)$ and $C = e^B$
- b) $f(x) = Cx^A$, by using the change of variables $X = \ln(x)$, $Y = \ln(y)$ and $C = e^B$
- c) Use the root-mean square error of f to determine which curve gives the best fit.

7- (10 points) Find the natural cubic spline that passes through the points (-3,2), (-2,0), (1,3), and (4,1) with the free boundary conditions S "(-3) = 0 and S "(4) = 0.