King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 321 First Exam

Term 111

Full	name:
ID N	lumber:

Question Number	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
-		_	-	44		2	44	0	_	60
Total	4	5	5	11	6	3	11	8	/	60
Your										
Mark										

1-	(4 points)	Let $x =$	1000000	and $y =$	999996.	Then
----	------------	-----------	---------	-----------	---------	------

- a) Find the error E_X .
- b) Find the relative error R_{χ} .
- c) Determine the number of significant digits in the approximation.
- 2- (5 points) Which formulas shall we use to compute the two roots of the equation $x^2 + bx 10^{-12} = 0$ more accurately where b is a number greater than 100?

3- (5 points) If a=0.9 and b=1.0, how many steps of the bisection method are needed to determine the root with an error of at most $\frac{1}{2} \times 10^{-8}$?

- 4- (11 points) Consider the equation $x^3 = 2x + 2$.
 - a) Apply two steps of the method of False Position with initial bracket [1,2] to solve the equation.

b) Apply two steps of the Secant Method to solve the equation with initial guesses $x_0=1$ and $x_1=2$.

5- (6 points) If Newton's method is used on $f(x) = \frac{1}{x}$ starting with $x_0 = 1$, then what will be x_{50} ?

6- (3 points) Complete the following table about the methods for finding zeros of f(x) by specifying the order of convergence R:

Method	Special consideration	R =
Newton	Simple Root	
Newton	Multiple Root	
Secant	Simple Root	

- 7- (11 points) Solve the following system $\begin{bmatrix} 1.133 & 5.281 \\ 24.14 & -1.210 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6.414 \\ 22.93 \end{bmatrix}$ using an 4-digit rounding arithmetic.
 - a) By using Naïve Gaussian Elimination.

b)	By using Gaussian Elimination with partial pivoting.
c)	Compare the obtained results from a) and b).
d)	Is the given system ill conditioned?

8- (8 points) Consider the matrix
$$\begin{bmatrix} 25 & 0 & 0 & 0 & 1 \\ 0 & 27 & 4 & 3 & 2 \\ 0 & 54 & 58 & 0 & 0 \\ 0 & 108 & 116 & 6 & 0 \\ 100 & 0 & 0 & 0 & 24 \end{bmatrix}$$

a) Determine the LU Factorization.

b) Use a) to solve the system
$$Ax = b$$
 with $b = \begin{bmatrix} 26\\36\\112\\230\\124 \end{bmatrix}$

- 9- (7 points) Investigate the nature of the fixed point iteration when $g(x) = -4 + 4x \frac{1}{2}x^2$.
 - a) Find the fixed points.
 - b) Use the starting point $p_0=1.9$ and compute p_1 , p_2 and p_3 .

c) Use the starting point $p_0=3.8$ and compute p_1 , p_2 and p_3 .

d) Do we have convergence in a) or b)? Why?