King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 302 Final Exam

Madi 302 I mai Emaii		
Semester (111)	January 09, 2012	Time: 07:30 - 10:30 am
Name:		
I.D:		Section:

Problem	Points
1	7
2	9
3	7
4	9
5	7
6	9
7	11
8	11
Total	70

Problem 1. Let Σ be the portion of the cone $z=\sqrt{x^2+y^2}$ in the first octant for $1\leq z\leq 3$. Evaluate the surface integral

$$\int_{\Sigma} \int xz^2 \, \mathrm{d}S.$$

Problem 2. Given the surface Σ which consists of the cylinder

$$\Sigma_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, \ 0 \le z \le R\}$$

and the disk

$$\Sigma_2 = \{(x, y, z) \in \mathbb{R}^3 : z = R, \ x^2 + y^2 \le 1, \}.$$

The surface Σ is bounded by the circle C in the xy-plane oriented counterclockwise from above.

Let
$$F(x, y, z) = y^3 \mathbf{i} - x^3 \mathbf{j} + \sin(z^2) \mathbf{k}$$
.

Use Stokes' Theorem to compute the line integral $\oint_{\mathcal{C}} F.dr$.

Problem 3. Let $F(x, y, z) = 2x\mathbf{i} + z^2\mathbf{j} - y^3x\mathbf{k}$ and M be the volume enclosed between the spheres $S_1: x^2 + y^2 + z^2 = 4$ and $S_2: x^2 + y^2 + z^2 = 9$.

Find the outward flux

$$q = \int_{S_1 \cup S_2} F.\mathbf{n} \, \mathrm{d}S.$$

Problem 4. Let $f(z)=z|z|^2$. We denote by $x=\mathrm{Re}(z),\ y=\mathrm{Im}(z),\ u(x,y)=\mathrm{Re}(f(z))$ and $v(x,y)=\mathrm{Im}(f(z)).$

- (1) Find all (x, y) at which u, v satisfy Cauchy-Riemann Equations.
- (2) Is f(z) differentiable at $z_0 = 0$? why?

Problem 5. Let C be the positively oriented circle given by |z - i| = 1. Compute the integral

$$\oint_C \frac{|z|^2}{z-i} \, \mathrm{d}z.$$

Problem 6. Use Cauchy Integral Formula to evaluate the integral

$$\oint_{\mathcal{C}} \frac{e^{2iz}}{(z+i)^4} \, \mathrm{d}z,$$

where C is any positively oriented simple closed contour enclosing -i.

Problem 7.

- (1) Find the Laurent series of the function $f(z) = \frac{1}{4z z^2}$ in the annular domain D given by: 0 < |z| < 4 (punctured disk).
- (2) Use (1) to evaluate the contour integral

$$I = \oint_{\mathcal{C}} f(z) \, \mathrm{d}z,$$

where \mathcal{C} is the positively oriented circle |z|=3.

Problem 8. Let
$$f(z) = \frac{1}{z(e^z - 1)}$$
.

- (1) Find all the poles of f(z) and their orders.
- (2) Let \mathcal{C} be the positively oriented circle |z|=7. Evaluate the contour integral

$$\oint_{\mathcal{C}} f(z) \, \mathrm{d}z.$$