King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Semester (111)

December 19, 2011

Math 302 Quiz 5

Name:

ID:

Exercise 1. Let f(z) = zRe(z). Show that Cauchy-Riemann Equations do not hold at any point except at z = 0. Is f differentiable at $z_0 = 0$?

Solution. Let z = x + iy; then $f(z) = x^2 + ixy$. Set $u(x, y) = x^2$ and v(x, y) = xy. Then

$$\begin{cases} \frac{\partial u}{\partial x} = 2x, \frac{\partial v}{\partial y} = x\\ \frac{\partial u}{\partial y} = 0, \quad \frac{\partial v}{\partial x} = y\end{cases}$$

Hence CRE are satisfied iff $x = y = 0 \Leftrightarrow z = 0$. Differentiability at 0.

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h \operatorname{Re}(h)}{h} = \lim_{h \to 0} \operatorname{Re}(h) = 0$$

Thus f'(0) = 0.

Exercise 2. Let u(x, y) = 2x - 2xy.

- (1) Show that u is a harmonic function.
- (2) Find a harmonic conjugate v of u.

Solution.

– The first partial derivatives of u are:

$$\begin{cases} \frac{\partial u}{\partial x} = 2 - 2y \\ \frac{\partial u}{\partial y} = -2x \end{cases}$$

Hence $\frac{\partial^2 u}{\partial x^2} = 0 = \frac{\partial^2 u}{\partial y^2}$. Thus $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$, consequently u is a harmonic function.

– If v is a harmonic conjugate of u, then, using CRE, we have

$$\begin{cases} \frac{\partial u}{\partial x} = 2 - 2y = \frac{\partial v}{\partial y} \quad (1) \\ \frac{\partial u}{\partial y} = -2x = -\frac{\partial v}{\partial x} \quad (2) \end{cases}$$

From Equation (1), we deduce that $v(x,y) = 2y - y^2 + \alpha(x)$. Now, substituting this value in Equation (2), we get $-2x = -\alpha'(x)$. This leads to $\alpha(x) = -x^2 + c$, for some constant $c \in \mathbb{R}$.

Therefore,

$$v(x,y) = 2y - y^2 - x^2 + c,$$

 $v(x, y) = 2y - y - x^{2} + c,$ so $v(x, y) = 2y - y^{2} - x^{2}$ is a harmonic conjugate of u.

 $\mathbf{2}$