King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 302	2 Exam II	
Semester (111) November 2-	4, 2011 Time	: 1:00 - 2:30 pm

Name:

I.D: Section:

Exercise	Points	
1	11	
2	9	
3	15	
4	15	
Total	50	

Exercise 1.

- (1) Let A be an $n \times n$ -matrix, P be an $n \times n$ nonsingular (invertible) matrix and $D = P^{-1}AP$. Show that for each positive integer k, $A^k = PD^kP^{-1}$.
- (2) Let $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$. (*i*) Find a nonsingular matrix *P* that diagonalizes *A*.
 - (ii) Find $D = P^{-1}AP$ and A^{19} .

 $\mathbf{2}$

Exercise 2. Given the surface S defined by: $z = \sqrt{x^2 + y^2}$.

- (i) Find the normal vector to S at the point $(1, 1, \sqrt{2})$.
- (*ii*) Find an equation of the tangent plane to the surface at $(1, 1, \sqrt{2})$.

Exercise 3. Let $F = (-16y + \sin(x^2))\mathbf{i} + (4e^y + 3x^2)\mathbf{j}$ be a force acting along the positively oriented simple closed path $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3$, where

- C_1 is the positively oriented arc of the circle $x^2 + y^2 = 1$ with starting point $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and ending point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$,
 - C_2 is the line segment joining $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and the origin (0, 0).
 - C_3 is the line segment joining (0,0) and $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$.
 - (1) Graph the path \mathcal{C} .
 - (2) Evaluate the work done by the force F (remember Green's Theorem).

Exercise 4. Let $D = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$ and F be the vector field defined on D by

$$F(x, y, z) = \frac{1}{x} \mathbf{i} + \frac{1}{y} \mathbf{j} + \frac{1}{z} \mathbf{k}.$$

- (1) Check that F is conservative.
- (2) Evaluate the line integral $\int_{c} F.dr$, where C is a path (piecewise smooth curve) in D with starting point A = (1, 1, 1) and ending point B = (1, 2, 1).