King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260 Class Test III, Semester II, 2010-2011

Name:-

ID:-----Section:----Serial:-----

1. If v_1 , v_2 , and v_3 are linearly independent, use the definition of linear independence to prove that v_1 , $v_1 + v_2$, and $v_1 + v_2 + v_3$ are linearly independent.

2. Let V be the vector space of all functions f from \mathbb{R} to \mathbb{R} with the usual definitions of addition and scalar multiplication.

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x)$$

Let W be the set of all even functions in V . Prove that W is a subspace of V.

3. Show that
$$\begin{bmatrix} 1\\3\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\-1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ form a basis for \mathbb{R}^3 .

4. Find the general solution of the DE $y^{(4)} + y'' = 0$.