version 01 King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260 Exam II, Semester I, 2011-2012 Net Time Allowed: 120 minutes

Name:-

ID:-----

-Section:----Serial:--

Q#	Marks	Maximum Marks
1-8		24
9		7
10		6
11		7
12		4
13		17
Total		65

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

Note:

You should write all your answers of part I in the box below.

Part I

1	2	3	4	5	6	7	8	9(a)	9(b)	9(c)	9(d)	9(e)	9(f)	9(g)

Part I

1. If
$$A = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$
 and $A^2 + \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} = I_3$, then $x + y + z =$
(a) $\frac{9}{8}$
(b) $\frac{-7}{8}$
(c) $\frac{-9}{8}$
(d) $\frac{7}{8}$
(e) 1

2. If |A| = 5 where A is 3×3 matrix, then $|(2A)^{-1}| =$

(a)
$$\frac{-1}{40}$$

(b) $\frac{1}{40}$
(c) $\frac{1}{10}$
(d) $\frac{1}{-10}$
(e) $\frac{2}{5}$

- 3. Let E_1 be the 3 × 3 elementary matrix that multiplies row 1 by 3, let E_2 be the 3 × 3 elementary matrix that interchange row 2 by row 3, and let E_3 be the 3 × 3 elementary matrix that adds two times row 2 to row 1. If determinant of A equals 10, and $C = E_1 E_2 E_3 A$. The value of the determinant of C is equal to:
 - (a) -30
 - (b) 30
 - (c) -60
 - (d) 60
 - (e) Can not be computed

4. Let $S = \{A_1, A_2, A_3\}$, where

$$A_1 = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}.$$

Then

- (a) S span the vector space $M_{2\times 2}(\mathbb{R})$
- (b) S form a basis for vector space $M_{2\times 2}(\mathbb{R})$
- (c) S is linearly independent only.
- (d) S is linearly dependent.
- (e) All choices are wrong.

5. If $\begin{bmatrix} -1 \\ -0.5 \\ 0 \end{bmatrix}_{\beta} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ relative to the basis β of \mathbb{R}^3 , where $\beta = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$, then a + b + c is equal to: (a) 1

- (b) -1
- (c) 2
- (d) -2
- (e) 0

6. If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 6$$
, then $\begin{vmatrix} 2a & 2d & 2g \\ b-c & e-f & h-i \\ c-a & f-d & i-g \end{vmatrix}$ is equal to:
(a) 0
(b) 12
(c) 6
(d) 48
(e) 18

7. The homogeneous DE with 0, 1, 1, 2 - 3i as roots of its characteristic equation is :

(a)
$$y^{(5)} - 6y^{(4)} + 22y^{'''} - 40y^{''} + 13y = 0.$$

- (b) $y^{(5)} 6y^{(4)} + 22y^{'''} 30y^{''} 13y^{'} = 0.$
- (c) $y^{(5)} 6y^{(4)} + 22y^{'''} 30y^{''} + 13y^{'} = 0.$
- (d) $y^{(4)} (4 3i)y^{(3)} + (5 6i)y'' (2 3i)y' = 0.$
- (e) $y^{(4)} + (4 3i)y^{(3)} + (5 6i)y'' + (2 3i)y' = 0.$

8. The particular solution of the second order homogeneous DE

$$y^{''} - 6y^{'} + 4y = 0, \qquad y(0) = 0, y^{'}(0) = \sqrt{10}$$

at x = 1 is:

(a)
$$y = \frac{\sqrt{10}}{3}(e^4 - e)$$

(b) $y = e^{(3+\sqrt{5})} - e^{(3-\sqrt{5})}$
(c) $y = e^{(5+\sqrt{3})} + e^{(5-\sqrt{3})}$
(d) $y = \frac{1}{\sqrt{2}}(e^{(5+\sqrt{3})} - e^{(5-\sqrt{3})})$
(e) $y = \frac{1}{\sqrt{2}}(e^{(3+\sqrt{5})} - e^{(3-\sqrt{5})})$

- 9. Answer TRUE (\checkmark) or FALSE (\times).
 - (a) Let A and B be $n \times n$ matrices, then $(A + B)^2 = A^2 + 2AB + B^2$.
 - (b) If C is an invertible matrix and AC = CB, then A = B.
 - (c) If the linear system Ax = 0 has a nontrivial solution, then A can be expressed as a product of elementary matrices.
 - (d) If A is an $n \times n$ matrix, then $det(A^2)$ can not be negative.
 - (e) Let A be an $n \times n$ matrix and c be a scalar, then $(cA)^{-1} = \frac{1}{c}A^{-1}$
 - (f) Let A be an $n \times n$ matrix, then $A^T A$ is a symmetric matrix.
 - (g) If $S = \{A \in M_{2 \times 2}(\mathbb{R}) : \det(A) = 0\}$. Then S is a vector space.

Part II

10. Using Cramer's rule find the value of x_3 in the following system

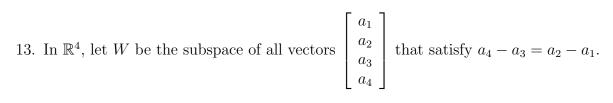
 $x_1 + x_2 - x_3 = 6$ $x_1 - x_2 + x_3 = 2$ $x_1 - 2x_3 = 0$

11. Using the adjoint matrix find the inverse of

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & -4 & 12 \end{array} \right]$$

12. Let A be $n \times n$ matrix with $A^4 = 0$. Prove that $I_n - A$ is invertible with

$$(I_n - A)^{-1} = I_n + A + A^2 + A^3.$$



(a) Show that W is a subspace of \mathbb{R}^4 .

(b) Show that
$$S = \left\{ \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$
 span W .

(c) Find a subset α of S that is a basis for W.

.