MASTER

$\begin{array}{cccc} {\rm King\ Fahd\ University\ of\ Petroleum\ \&\ Minerals} \\ {\rm Department\ of\ Mathematics\ \&\ Statistics} \\ {\rm Math\ 202} & {\rm Final\ Exam} \end{array}$

The First Semester of 2011-2012 (111)

Time Allowed: 180 Minutes

Name:		
Section/Instructor:	Serial #:	
• Mobiles and calculators are not allowed in this	s exam.	
• Write all steps clear.		
• Write MCO Answers on the front page.		

Written Questions

Question #	Marks	Maximum Marks
1		12
2		20
3		16
4		20
5		16
Total		/84

Multiple Choice Questions

Question #	Student Answer	Marks	Maximum Marks
1			7
2			7
3			7
4			7
5			7
6			7
7			7
8			7
Total			/56
Grand Total			/140

Q:1 (12 pints) Determine singular points of the differential equation

$$x^{3}(x^{2} - 16)(x - 1)^{2}y'' + 3x(x - 1)y' + 5(x + 4)y = 0.$$

Classify each singular point as regular or irregular.

Q:2 (20 points) Find two linearly independent power series solutions of y'' + xy' + 3y = 0 about the ordinary point x = 0. Give the first three nonzero terms for each series solution.

Q:3 (16 points) Solve the differential equation X' = AX, where $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

Q:4 (20 points) Solve the initial value problem X' = AX, $X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ where $A = \begin{bmatrix} -3 & -1 \\ 2 & -1 \end{bmatrix}$

Q:5 (16 points) Find X_p for the system X' = AX + F(t), where $A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, $F(t) = \begin{bmatrix} 70e^{4t} \\ 20e^t \end{bmatrix}$ and $X_c = c_1 \begin{bmatrix} e^{-3t} \\ -2e^{-3t} \end{bmatrix} + c_2 \begin{bmatrix} 2e^{2t} \\ e^{2t} \end{bmatrix}$.

- 1. Integrating factor that makes the differential equation $(-xy\sin x + 2y\cos x)dx + 2x\cos xdy = 0$ EXACT is:
 - (a) $(\sec x)^{\frac{1}{2}}$
 - (b) $(\tan x)^{\frac{1}{2}}$
 - (c) $\frac{1}{2}\ln(\sec x)$
 - (d) $\frac{1}{2} \sec x$
 - (e) $\frac{1}{2} \tan x$

- 2. If y(x) is a solution of $(x + ye^{\frac{y}{x}})dx xe^{\frac{y}{x}}dy = 0$ with y(1) = 0, then $y(e^2)$ is equal to:
 - (a) $e^2 \ln 3$
 - (b) $e \ln 3$
 - (c) 3 ln 3
 - (d) $e \ln 9$
 - (e) $e^2 \ln 9$

- 3. After 6 hours, a radioactive material has decreased by 87.5% (remained 12.5%). What is the half life of the material?
 - (a) 2 hours
 - (b) 4 hours
 - (c) 6 hours
 - (d) 8 hours
 - (e) ∞ hours

- 4. If y(x) is the solution of the initial value problem 3y''' + 2y'' = 0, y(0) = -1, y'(0) = 0, y''(0) = 1, then $y(\frac{3}{2})$ is equal to:
 - (a) $\frac{9}{4e} 1$
 - (b) $\frac{3}{4e} 1$
 - (c) $\frac{3}{4e} + 1$
 - (d) $\frac{9}{4e} + 1$
 - (e) $\frac{3}{2e} 1$

5. Which one of the following functions is annihilated by the operator $(D+1)(D^2-6D+25)$

(a)
$$e^{-x} + e^{3x} \cos 4x$$

(b)
$$e^{-x} + xe^{3x}\cos 4x$$

(c)
$$e^{-x} + e^{5x} + xe^{5x}$$

(d)
$$e^{-x} + e^{-5x} + xe^{-5x}$$

(e)
$$e^{-x} + e^{-3x} \cos 5x + e^{-3x} \sin 5x$$

6. If $y_c = c_1 \cos 2x + c_2 \sin 2x$ is complementary function of the equation $4y'' + 16y = \csc 2x$, then a particular solution is given by:

(a)
$$-\frac{1}{8}x\cos 2x + \frac{1}{16}\sin 2x \ln|\sin 2x|$$

(b)
$$-\frac{1}{16}x\cos 2x + \frac{1}{8}\sin 2x \ln|\sin 2x|$$

(c)
$$-\frac{1}{8}x\cos 2x - \frac{1}{8}\sin 2x \ln|\sec 2x|$$

(d)
$$-\frac{1}{8}x\cos 2x + \frac{1}{16}\sin 2x \ln|\cos 2x|$$

(e)
$$-\frac{1}{16}x\cos 2x + \frac{1}{8}\sin 2x \ln|\csc 2x|$$

- 7. If we convert the Cauchy-Euler equation $-2x^2y'' + xy' 2y = 0$ into an equation with constant coefficients y'' + ay' + by = 0, then a + b is equal to:
 - (a) $-\frac{1}{2}$
 - (b) $-\frac{3}{2}$
 - (c) $\frac{1}{2}$
 - (d) $-\frac{1}{3}$
 - (e) $-\frac{2}{3}$

- 8. If $y_{p_1} = xe^x$ is a particular solution of $y'' y' = e^x$ and $y_{p_2} = \frac{1}{2}(\cos x \sin x)$ is a particular solution of $y'' y' = \sin x$, then $y_p = \sin x \cos x xe^x$ is a particular solution of:
 - (a) $y'' y' = -2\sin x e^x$
 - (b) $y'' y' = \sin x \cos x + e^x$
 - (c) $y'' y' = 2\sin x e^x$
 - $(d) \quad y'' y' = e^x \cos x$
 - (e) $y'' y' = 2e^x 2\sin x$