Part I [52 pts] (Written: Provide all necessary steps required in the solution.)

Q1. (i) Find an equation of the plane passing through the points (1,2,3), (-1,2,0) and perpendicular to the plane x + 2y + 3z = 1. (7 pts)

(ii) Find the distance between the planes: x - 2y + 3z = 1 and -2x + 4y - 6z = 1. (5 pts)

Q2. Let $f(x, y) = \ln \sqrt{16 - 4x^2 - y^2}$

(i) Find and sketch the domain of *f*.

(3+2 pts)

(ii) Find the range of *f*.

(2 pts)

(iii) Write an equation of the level curve of f which passes through the point (1,1). (3 pts)

Q3. Find **parametric equations** of the **normal line** to the **surface** $\ln\left(\frac{x}{y-z}\right) = x-1$ at the point (1,4,3). (8 pts)

Q4. The values of z = f(x, y) and its partial derivatives at (2, -2) are given in the following table:

f(2, -2)	$f_x(2,-2)$	$f_y(2,-2)$	$f_{xx}(2,-2)$	$f_{yy}(2,-2)$	$f_{xy}(2,-2)$
2	- 5	3	4	7	- 3

If $x = r^2 + s^2$ and y = 2rs, then find

(i)
$$\frac{\partial z}{\partial s} \Big|_{(r,s)=(1,-1)}$$

(4 pts)

(ii) $\frac{\partial^2 z}{\partial r \partial s} \bigg|_{(r,s)=(1,-1)}$

(6 pts)

Q5. Find the absolute maximum and absolute minimum of $f(x, y) = x(y^2 - 1)$ on the region $D = \{(x, y) : x^2 + y^2 \le 28\}.$ (12 pts)

Part II (8 MCQ: 6pts/each)Encircle your Choice for each MCQ on the front page of your answer book)

Q1. Let (*a*,*b*,*c*) is the **point of intersection** of the lines

*L*₁:
$$x = 4t + 2$$
, $y = 5t$, $z = 1 - t$ and *L*₂: $\frac{x - 2}{2} = \frac{y - 3}{2} = z + 8$.

Then a + b + c is

- (a) 23
- (b) 27
- (c) 18
- (d) 31
- (e) 33

Q2. The surface given by $x^2 + y^2 - z^2 - 4x + 2y - 2z + 5 = 0$ is

- (a) a paraboloid.
- (b) a hyperboloid of one sheet.
- (c) an ellipsoid.
- (d) a hyperboloid of two sheets.
- (e) an elliptic cone.

Q3. In order to make $f(x, y) = \frac{x^2 + y^2 - 4x^4y^4}{2(x^2 + y^2)}$ continuous at the origin, we must define f(0,0) as

- (a) 3/2
- (b) -1
- (c) 0
- (d) 1/2
- (e) 3/2

Q4. If $f(x, y) = (x^2 + y)\cos(x^2 + y)$ then $f_{xy}\left(\sqrt{\frac{\pi}{2}}, \pi\right)$ equals to

- (a) 0
- (b) $4\sqrt{\pi}$
- (c) $2\sqrt{2\pi}$
- (d) $\pi\sqrt{\pi}/2$
- (e) $6\pi\sqrt{\pi}$

Q5. If f(x, y, z) be a **differentiable** function with

f(1,-2,3) = 1, $f_x(1,-2,3) = 10$, $f_y(1,-2,3) = 100$, and $f_z(1,-2,3) = 20$.

Then using the **linear approximation** of f at (1, -2, 3), the **approximate value** of f(0.9, -2.02, 2.95) is

- (a) 7
- (b) 310
- (c) -8
- (d) 5/4
- (e) 3
- **Q6.** The equation of the curve $\ln(u^2 + v^4 + w^2) \sqrt{w^2 + 3} = \ln 3 2$ defines *w* as an implicit function of *u* and *v*. Then $\partial w / \partial v$ at (u, v, w) = (1, 1, 1) is
- (a) 8
- (b) ln2 2
- (c) 2ln2 5
- (d) 1/3
- (e) 8/5

- **Q7.** The temperature of a solid at a point (x, y, z) is given by $T(x, y, z) = (x + 2y + 3z)^{3/2}$. Then the rate of change of temperature at the point (1,1,2) in the direction of vector $\vec{v} = 2\vec{j} \vec{k}$ is
- (a) $9/3\sqrt{7}$
- (b) $7/\sqrt{5}$
- (c) 4/3
- (d) $-2/\sqrt{7}$
- (e) $9/(2\sqrt{5})$

Q8. A function g(x,y) has continuous first and second order partial derivatives. Let (1,1) and (3,0) are the critical points of g with the values given in the following table

(x,y)	$g_{x}(x,y)$	$g_{v}(x,y)$	$g_{xx}(x,y)$	$g_{yy}(x,y)$	$g_{xy}(x,y)$
(1,1)	0	0	-2	-2	- 1
(3,0)	0	0	0	- 6	3

Then *g* has

(a) a local minimum at (1,1) and a saddle point at (3,0).

(b) a local maximum at (1,1) and a saddle point at (3,0).

(c) a local minimum at (1,1) and a local maximum at (3,0).

(d) a local maximum at (1,1) and a local minimum at (3,0).

(e) a saddle point at (1,1) and a local minimum at (3,0).