Part I [52 pts] (Written: Provide all necessary steps required in the solution.)

Q1. (i) Find $\frac{d^2y}{dx^2}$ for the parametric curve **C**: $x = 3t^2 - t$, $y = 2t + t^3$. (5+5 pts)

(ii) Find the interval (s) where C is concave up.

Q2. Consider the vectors $\vec{u} = -3\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{v} = \vec{i} + 2\vec{j} - 3\vec{k}$ (10 pts)

(i) Find the angle between \vec{u} and \vec{v} .

(ii) Find the projection of \vec{u} onto \vec{v}

Q3. Use the scalar triple product to determine whether the four points: A(1,3,2), B(3,-1,6), C(5,2,0), D(3,6,-4)

lie in the **same plane**.

Q4. Find the exact **length** of the **polar curve**: $r = \theta^2$, $0 \le \theta \le \pi / 4$. (10 pts)

Q5. Consider the polar curve **C**: $r = 2 + 4 \sin \theta$

(a) Show that **C** is **symmetric** about the vertical line $\theta = \frac{\pi}{2}$.

(b) Find the **polar coordinates** of the points where C **intersects** the **polar axis**.

(c) Find the **polar coordinates** of the points where C **intersects** the lines $\theta = \frac{\pi}{2}$ and $\theta = \frac{\pi}{4}$

(d) **Plot** the points obtained in (b)-(c) and make use of (a) to **sketch the graph** of **C** in the following polar chart: [*Indicate important values of* r and θ *in the outer circle of the chart*]

- Q1. If the end points of a diameter of a sphere lie at A(1,4,-2) and B(-7,1,2) then an equation of the sphere is given by
- (a*) $x^{2} + y^{2} + z^{2} + 6x 5y = 7$ (b) $x^{2} + y^{2} + z^{2} - 8x - 4y = 10$ (c) $x^{2} + y^{2} - z^{2} + 6x - 4y = 7$ (d) $x^{2} + y^{2} + z^{2} + 7x - 10y = 20$
- (e) $x^2 + y^2 + z^2 + 6x + 4y = 12$

Q2. Suppose that a 3-D vector \vec{v} lies below the *xy*-plane and has the **direction angles**

 α , β , γ with x, y and z axes respectively. If $\alpha = \frac{\pi}{4}$, $\beta = \frac{\pi}{3}$, then the value of γ is given by

(a*) $2\pi/3$ (b) $(\sqrt{2}\pi)/2$ (c) -1/2(d) $5\pi/6$ (e) $-1/\sqrt{2}$ **Q3.** A value of α for which the vectors $\vec{u} = 3\vec{i} + \alpha \vec{k}$ and $\vec{v} = 2\alpha \vec{i} - \vec{j}$ have the same length is given by

- $(a^*) \sqrt{8/3}$
- (*b*) $\sqrt{5/3}$
- (c) $\sqrt{8/5}$
- (d) $\sqrt{7/3}$
- (*e*) $\sqrt{5/8}$

Q4. The area of the triangle with the vertices (a,0,0), (0,2a,0) and (0,0,3a) is

- $(a^*) 7a^2/2$
- (b) $5a^2/2$
- (c) $6a^3$
- (*d*) 7*a*
- (*e*) $3a^3/2$

Q5. The area of the region inside the curve $r = 3\sin\theta$ and outside the curve $r = 2 - \sin\theta$ is

$$(a^{*}) \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4\sin^{2}\theta + 2\sin\theta - 2)d\theta$$

(b) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (2\sin^{2}\theta - 2\sin\theta - 1)d\theta$
(c) $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4\sin^{2}\theta + \sin\theta + 3)d\theta$
(d) $\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4\sin^{2}\theta + 5\sin\theta - 2)d\theta$
(e) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (4\sin^{2}\theta + 5\sin\theta - 2)d\theta$

Q6. The Cartesian equation of the curve $x = \ln t$, $y = \sqrt{t}$, $t \ge 1$ is given by

(a*) $y = e^{x/2}, x \ge 0$ (b) $y = e^x, x \ge 1$ (c) $y = e^{x/2}, x \ge 1$ (d) $y = e^x, x \ge 0$ (e) $y = e^{2x}, x \ge 0$

Q7. The slope of the tangent line to the polar curve $r = \cos \theta + 1$ at $\theta = \pi / 2$ is

(a*) 1
(b) 1/2
(c) 1/3
(d) 0

(e) - 1/2

Q8. Two **forces** *F* and **G** are acting on an object placed at the **origin** of the *xy*-**plane** with **magnitudes** 1 N and 2 N respectively.

If **F** acts along the **positive** *y*-axis and **G** makes an **angle** of $\theta = \pi/3$ with the **positive** *x*-axis, then the **magnitude** of the **resultant** force **F** + **G** is

(a*) $\sqrt{5+2\sqrt{3}}$ N (b) $\sqrt{1+\sqrt{3}}$ N (c) $\sqrt{2+\sqrt{3}}$ N (d) $5+\sqrt{3}/2$ N (e) $\sqrt{2+2\sqrt{3}}$ N