Name:

Section #:

$\mathbf{Q1}) \ [\mathbf{4pts}]$

- (a) Sketch the parametric curve given by $x = \sin t$, $y = \csc t$, $0 < t < \pi/2$. Indicate with an arrow the direction in which the curve is traced as t increases.
- (b) If $x = t e^t$, $y = t + e^{-t}$, find dy/dx and d^2y/dx^2 .

Solution:

Q2) [3pts] Sketch the polar curve $r = 2 + \cos 2\theta$. Solution:

Q3) [**3pts**] Find the area of the region that lies inside the curve $r = 3\cos\theta$ and outside the curve $r = 1 + \cos\theta$.

Solution:

Section #:

$\mathbf{Q1}) \ [\mathbf{4pts}]$

- (a) Sketch the parametric curve given by $x = 1 + \sqrt{t}$, $y = t^2 4t$, $0 \le t \le 5$. Indicate with an arrow the direction in which the curve is traced as t increases.
- (b) Find an equation of the tangent to the curve $x = \tan \theta$, $y = \sec \theta$ at the point $(1, \sqrt{2})$.

Solution:

Q2) [**3pts**] Sketch the polar curve $r = 1 - 2\sin\theta$.

Solution:

Q3) [**3pts**] Find the area of the region that lies inside both the curves $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$.

Solution: