- 1. If $\lim_{x\to 0} \frac{3^{ax}-1}{x} = 1$, then the value of a equals
 - a) $\frac{1}{\ln 3}$
 - b) ln 3
 - c) 3
 - $d) \ln 3$
 - e) $\frac{1}{3}$
- 2. If $f(x)=\begin{cases} \frac{\sin(\cos x-1)}{x} & \text{if} \quad x\neq 0\\ a & \text{if} \quad x=0 \end{cases}$. The value of a which makes the function f(x) continuous every where is
 - a) 0
 - b) π
 - c) $-\pi$
 - d) -1
 - e) $\frac{\pi}{2}$

- 3. If $\cosh x = \frac{5}{3}$ and x < 0, then $3 \sinh x 5 \tanh x$ is
 - a) 0
 - b) -8
 - c) 8
 - d) -6
 - e) 6
- 4. If there are two tangent lines from the point P(0,-1) that touch the graph of $f(x)=x^2$ at x=a and x=b, then f'(a)+f'(b)=
 - a) 0
 - b) 2
 - c) 4
 - d) 8
 - e) 16

- 5. Using the graph of $f(x)=\tan x$, the maximum value of δ such that |f(x)|<0.1 whenever $|x|<\delta$ is equal to
 - a) $\tan^{-1} 0.1$
 - b) $\tan^{-1}(-0.1)$
 - c) $\tan^{-1} 0.2$
 - d) $2 \tan^{-1} 0.1$
 - e) 0
- 6. If $G(x) = 60\sqrt{x} 162\sqrt[3]{x}$, then the slope of the tangent line to the graph of y = G'(x) at x = 1 is
 - a) 21
 - b) -18
 - c) 61
 - d) -13
 - e) 28

7. If $h(x) = \frac{\sec x}{g(x)}$ with $h'(\pi) = 2$ and $g(\pi) = \sqrt{2}$, then $g'(\pi)$ is

- a) 4
- b) $4 + \sqrt{2}$
- c) $-2\sqrt{2}$
- d) 5
- e) $2\sqrt{2}$

8. If $f(x) = \sec x$, then $f''(\frac{\pi}{4}) =$

- a) $3\sqrt{2}$
- b) 1
- c) $\frac{12}{13}$
- $d) \frac{5}{4}\sqrt{3}$
- e) 9

- 9. The slope of tangent line to the graph of the equation $3x^{\frac{4}{3}} + xy + 3y^{\frac{4}{3}} = 59$ at the point (1,8) is
 - a) $-\frac{4}{3}$

 - b) $\frac{19}{8}$ c) $-\frac{20}{9}$
 - d) $\frac{16}{7}$
- 10. The slope of the tangent line to the graph of $y = (\ln x)^x$ at the point (e, 1) is
 - a) 1
 - b) 2
 - c) e
 - d) 0
 - e) -1

11. If
$$f(x) = \ln \left| \frac{(x^2 + 4)^{5/2}}{(x + \sqrt{x})^{3/2}} \right|$$
, then $f'(1) =$

- a) $-\frac{1}{8}$
- b) $\frac{5}{9}$
- c) $\frac{7}{8}$
- d) $-\frac{4}{9}$
- e) $-\frac{13}{8}$

12. A particle is moving along the curve $y = \sqrt{x}$. As the particle passes through the point (4,2), its x-coordinate increases at a rate of 3 cm/s. The rate of change of the distance from the particle to the origin at that instant is

- a) $\frac{27}{4\sqrt{5}}$
- b) 9
- c) $\frac{2}{\sqrt{5}}$
- $d) \frac{2}{3\sqrt{7}}$
- e) $\frac{4}{\sqrt{11}}$

- 13. Using differentials or linear approximation the number $\sqrt[3]{26}$ is estimated as

 - b) $\frac{82}{27}$
 - c) 2.99
 - d) 3.1
 - e) $\frac{85}{27}$
- 14. The value of $\frac{d}{dx}(\sinh^{-1}(\operatorname{csch} x))$ at $x = \ln 3$ is

 - a) $-\frac{3}{4}$ b) $-\frac{5}{4}$ c) $\frac{7}{6}$ d) $\frac{11}{6}$ e) $\frac{7}{4}$

15. The position function of a particle moving along a straight line is $s(t) = 8t - 3t^2$ for t in [1, 2], where t is measured in seconds and s in meters. The particle is speeding up when

a)
$$\frac{4}{3} < t < 2$$

b)
$$1 < t < \frac{4}{3}$$

c)
$$1 < t < 2$$

d)
$$1 < t < \frac{3}{2}$$

e)
$$\frac{3}{2} < t < 2$$

16. The radius of a circular disk is measured to be 5 cm with a maximum error in measurement of 0.1 cm. Using differentials, the maximum error in calculating circumference of the circular disk is

a)
$$\frac{\pi}{5}$$
 cm

b)
$$\pi$$
 cm

c)
$$\frac{\pi}{10}$$
 cm

d)
$$\frac{\pi}{2}$$
 cm

e)
$$\frac{\pi}{50}$$
 cm

- 17. The sum of the absolute maximum value and the absolute minimum value of the function $f(x) = 2\sin x + \cos 2x$ on the internal $[0, \frac{\pi}{2}]$ is
 - a) $\frac{5}{2}$
 - b) 2
 - c) $\frac{3}{2}$
 - d) 3
 - e) $\frac{7}{2}$
- 18. The sum of all critical numbers of the function $f(x) = \frac{(x-4)^2}{\sqrt[3]{x+1}}$ is
 - a) 2
 - b) 1
 - c) 4
 - d) -2
 - e) -1

19. If $f(5) = -\frac{5}{2}$ and $f'(x) \ge -\frac{1}{2}$ for $3 \le x \le 5$, then the largest possible value of f(3) is

- a) $-\frac{3}{2}$
- b) $\frac{1}{2}$
- c) $-\frac{1}{4}$
- d) $-\frac{2}{5}$
- e) 0

20. If c is a number satisfying the conclusion of the Mean Value Theorem when applied to $f(x) = \tan^{-1} x$ on [0, 1], then $\pi c^2 =$

- a) 4π
- b) 4
- c) $\pi + 1$
- d) 2π
- e) $\pi 2$

21. The function $f(x) = \frac{x}{x^2 + 1}$ is increasing on

- a) (-1,1)
- b) $(-\infty, -1) \cup (1, \infty)$
- c) $(-\infty,0)$
- d) $(0,\infty)$
- e) $(-\infty, \infty)$

22. If the function $f(x) = x^3 + 2ax^2 - 3bx + 1$ has an inflection point at (1,2), then $2a + b^3$ equals

- a) -4
- b) -2
- c) 2
- d) 3
- e) -1

23. The value of the limit $\lim_{x\to 0} (1-\sin x)^{\frac{1}{x}}$ equals

- a) $\frac{1}{e}$
- b) *e*
- c) 1
- d) $\frac{1}{\sqrt{e}}$
- e) 0

24. The slant asymptote of $y = \frac{2x^3 + 3x^2 + 20}{x^2 + 1}$ is

- a) y = 2x + 3
- b) y = 2x 3
- c) y = 2x + 1
- d) y = 2x 1
- e) y = 2x

- 25. If (a,b) is a point on the ellipse $4x^2+y^2=4$ which is farthest away from the point (1,0), then $b^2=$
 - a) $\frac{32}{9}$
 - b) $\frac{1}{9}$
 - c) 11
 - d) 9
 - e) $\frac{29}{11}$
- 26. Let $x_1 = 1$ and $x_2 = 1.1$ be the first and second Newton's approximations of a zero of the differentiable function f. The value of $\frac{f(1)}{f'(1)}$ is
 - a) -0.1
 - b) 0.1
 - c) -10
 - d) -1.1
 - e) 1.1

- 27. Find the most general antiderivative of the function $f(x) = \frac{2\cos^2 x 1}{\cos^2 x}$
 - a) $2x \tan x + c$
 - b) $2x \sec x \tan x + c$
 - c) 2x + c
 - d) x + c
 - e) $2x \sec x + c$
- 28. The greatest area of the rectangle that has its base on the x-axis and is inscribed in the parabola $y=9-x^2$ is equal to
 - a) $12\sqrt{3}$
 - b) $6\sqrt{3}$
 - c) 9
 - d) 18
 - e) $\frac{2}{\sqrt{3}}$