Math 101, Exam 2, Term 111 Page 1 of 10

MASTER

1. The function $f(x) = \begin{cases} ax^2 + bx & \text{if } x \leq 1 \\ x + a^2 & \text{if } x > 1 \end{cases}$

is twice differentiable everywhere. Then $a^2 + b^2 =$

- a) 1
- b) 0
- c) $\frac{5}{4}$
- d) 2
- e) 5

2. If $f(x) = (2x-1)^{\frac{2}{3}}$, then the equation of the vertical tangent to the graph of f is

a)
$$x = \frac{1}{2}$$

b) $x = -\frac{1}{2}$
c) $x = \frac{2}{3}$
d) $x = -\frac{2}{3}$
e) $x = \frac{4}{3}$

Math 101, Exam 2, Term 111 Page 2 of 10

MASTER

3. The equations of the horizontal tangents to the curve $y = x^3 - 3x - 2$ are

- a) y = 0 and y = -4
- b) y = 1 and y = -1
- c) x = 1 and x = -1
- d) y = -4 and y = 1
- e) y = 0 and y = -1
- 4. At how many real values of x does the curve $y = x^6 3x^2 + x + 5$ have a tangent line parallel to the line y = x?
 - a) 3
 - b) 1
 - c) 2
 - d) 4
 - e) 5

Math 101, Exam 2, Term 111 Page **3 of 10**

MASTER

- 5. If the tangent line to the graph of $f(x) = \frac{2x}{2x+1}$ at the point (α, β) is y = 2 x + 1, then $\beta^2 =$
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) 5
- 6. If $f(x) = xe^x$ and n is a positive integer, then $f^{(n)}(1) =$
 - a) (n+1) e
 b) n e
 c) (n-1) e
 d) (n+2) e
 e) n e+1

MASTER

7. If
$$y = \frac{1 + \sin x}{1 + \cos x}$$
, then $\frac{dy}{dx} =$

a)
$$\frac{1 + \sin x + \cos x}{(1 + \cos x)^2}$$

b)
$$\frac{\sin x + \cos x}{1 + \cos x}$$

c)
$$\frac{\sin x + \cos x}{(1 + \cos x)^2}$$

d)
$$\frac{1 + \sin x}{(1 + \cos x)^2}$$

e)
$$\frac{2}{1 + \cos x}$$

8.
$$\lim_{\theta \to 1} \frac{\sin(\theta - 1)}{\theta^2 + \theta - 2} =$$

a) $\frac{1}{3}$
b) 0
c) $\frac{1}{2}$
d) 2
e) 1

Math 101, Exam 2, Term 111

MASTER

9. If
$$y = \sin(x^2)$$
 and $x = \cos t$, then $\frac{dy}{dt} =$

- a) $-\sin 2t \cos(\cos^2 t)$
- b) $\sin 2t \, \cos(\cos^2 t)$
- c) $-\sin t \cos(\cos^2 t)$
- d) $-\sin 2t \ \cos^3 t$
- e) $\sin 2t \ \cos^3 t$
- 10. Let f and g be differentiable functions and $h(x) = f(x^2g(x))$. If g(2) = -2 and g'(2) = 2, then h'(2) =
 - a) 0b) -2
 - c) 2
 - d) 3
 - e) -3

Math 101, Exam 2, Term 111

11. The equation of the tangent line to the curve given implicitly by

$$\sqrt{x+y} = y^2$$

at the point (0,1) is

- a) 3y x = 3b) 2y + x = 1c) 3y + x = 3d) 2y - x = 2e) 2y + x = 3
- 12. The equation of the normal line to the curve $y = \tan^{-1} \left(\sqrt{x-1} \right)$ at x = 2 is
 - a) $y = -4x + 8 + \frac{\pi}{4}$ b) $y = \frac{1}{4}x - \frac{1}{2} + \frac{\pi}{4}$ c) $y = 4x - 8 + \frac{\pi}{4}$ d) $y = -\frac{1}{4}x + \frac{1}{2} + \frac{\pi}{4}$ e) $y = -4x + 8 - \frac{\pi}{4}$

MASTER

13. If
$$f(x) = (x^2 + 2 x)^{50}$$
, then $f^{(100)}(1) =$

- a) 100 !
- b) 100
- c) 0
- d) 3(99 !)
- e) 2(50 !)

14. The slope of the tangent line to the graph of $y = (2x+1)^{\sin 3x}$ at $x = \frac{\pi}{6}$ is

a) 2
b)
$$4\left(\frac{\pi}{3}+1\right)$$

c) 6
d) $2\left(\frac{\pi}{3}+1\right)$
e) $\frac{4}{\frac{\pi}{3}+1}$

MASTER

15. If
$$y = \frac{(x+2)^2(2x-1)^3}{\sqrt{x+1}}$$
, then $y'(0) =$
a) 22
b) $-\frac{11}{2}$

- c) 44
- d) 24
- e) -11
- 16. The position function of a particle moving along a line is

$$s(t) = \sin t + \cos t$$

where t is measured in seconds and s in meters. The total distance traveled by the particle in the interval $[0, \pi]$ is

- a) $2\sqrt{2}$ meters
- b) 2 meters
- c) 4 meters
- d) $2\sqrt{2} + 2$ meters
- e) $2\sqrt{2} 2$ meters

17. The position function of a particle moving along a line is

$$s(t) = t^3 - 6t^2 + 9t \quad (0 \le t \le 5).$$

The time interval(s) where the particle is moving forward is (are)

a) (0,1) and (3,5)
b) (0,3)
c) (0,3) and (4,5)
d) (1,3)
e) (0,2) and (3,5)

- 18. The two equal sides of an isosceles triangle have length 4m. If the angle between them is increasing at a rate of 0.06 rad/s, then the rate at which the area of the triangle is changing when the angle between the sides of the triangle is $\frac{\pi}{3}$ equals
 - a) 0.24 m^2/s b) -0.24 m^2/s c) 2.4 m^2/s d) -2.4 m^2/s e) 0.024 m^2/s

Math 101, Exam 2, Term 111 Page **10 of 10**

19. If a snow ball melts so that its surface area decreases at a rate of $1 \text{ cm}^2/\text{min}$, then

Hint: Surface area of a sphere $= 4\pi r^2$

the rate at which the diameter changes, when the diameter is $10 \ cm$ equals

a)
$$\frac{-1}{20\pi}$$
 cm/min
b) $\frac{1}{20\pi}$ cm/min
c) $\frac{-1}{40\pi}$ cm/min
d) $\frac{1}{40\pi}$ cm/min
e) $\frac{-1}{10\pi}$ cm/min

- 20. The equation of the tangent line to the graph of $y = \ln x$ and passes through the origin is
 - a) e y = xb) y = e xc) $y = \frac{1}{e}(x - 1)$ d) $y = \frac{1}{e}(x + 1)$ e) y = 2 e x