King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 101- Calculus I Exam I 2011-2012 (111)

Tuesday, October 11, 2011.		Allowed Time: 2 hours	
Name:			
ID Number:		_ Serial Number:	
Section Number:	Instructor's Name:		

Instructions

- 1. Write neatly and eligibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 10 different problems (7 pages + cover page).

Question	Points	Your Score
Q1	14	
Q2	11	
Q3	11	
Q4	11	
Q5	11	
Q6	7	
Q7	8	
Q8	7	
Q9	10	
Q10	10	
TOTAL	100	

- 1. The graph of f is given.
 - (a) (8 points) Evaluate the limit if it exists. If it does not exist, explain why. Use the symbols ∞ or $-\infty$ as appropriate.
 - i. $\lim_{x \to 2^+} f(x)$ ii. $\lim_{x \to -3^+} f(x)$ iii. $\lim_{x \to -3} f(x)$ iv. $\lim_{x \to 4} f(x)$ v. $\lim_{x \to 0} f(x)$ vi. $\lim_{x \to 2^-} f(x)$ vii. $\lim_{x \to \infty} f(x)$ viii. $\lim_{x \to -\infty} f(x)$
 - (b) (2 points) State the equations of the horizontal asymptotes.
 - (c) (2 points) State the equations of the vertical asymptotes.
 - (d) (2 points) At what numbers f is discontinuous? Explain.

2. Evaluate the limit, if it exists:

(a) (2 points)
$$\lim_{x \to 1} \left(\frac{\frac{x}{2} + \frac{2}{x}}{2+x} \right)$$
.

(b) (3 points) $\lim_{x \to -3^-} \left(\frac{x^2 - 9}{[[x+3]]} \right)$, where [[x]] denotes the greatest integer less than or equal to x.

(c) (3 points)
$$\lim_{x \to 2^{-}} \frac{2 - \sqrt{7x - 10}}{x - 2}$$
.

(d) (3 points)
$$\lim_{x \to \infty} \frac{x^{-1} + x^{-4}}{x^{-2} - x^{-3}}$$
.

3. Evaluate the limit, if it exists:

(a) (3 points)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right)$$
.

(b) (3 points) $\lim_{x \to 0} \left(4 + x + x^2 \cdot \sin \frac{\pi}{x} \right)$.

(c) (3 points)
$$\lim_{x \to 0} \frac{\sin^2 x}{\cos x - 1}$$
.

(d) (2 points)
$$\lim_{x \to \frac{\pi}{2}^+} \arctan\left(\frac{x}{\sin 2x}\right)$$
.

 $4. \ Let$

$$f(x) = \begin{cases} \frac{6 c^2}{x+1} & , & \text{if } x > 1 \\ 27 & , & \text{if } x = 1 \\ c^3 x & , & \text{if } x < 1 \end{cases}$$

(a) (6 points) Find the values of c so that f(x) is continuous everywhere.

(b) (5 points) Find the values of c so that f(x) has removable discontinuity.

5. Let
$$f(x) = \frac{|x-1|}{x^2(x-1)}$$
.

(a) (6 points) Use limits to find all vertical asymptotes of the graph of f. (Justify your answer)

(b) (5 points) Use limits to find all horizontal asymptotes of the graph of f. (Justify your answer)

6. Let
$$f(x) = \frac{1}{x+1}$$
.

(a) (4 points) Use limits to find the slope of the tangent line to the graph of f at the point P(0,1).

(b) (3 points) Find the equation of the tangent line to the graph of f at the point P(0,1).

7. (8 points) Using the $\epsilon - \delta$ definition of limit, prove that $\lim_{x \to 0} (1 - 2x) = 1$.

MATH 101 Major Exam I

Term 111

- 8. The displacement (in meters) of a particle moving in a straight line is given by $s(t) = 2t^2+5$, where t is measured in seconds.
 - (a) (4 points) Find the average velocity over the interval [1, 1+h].

(b) (3 points) Use part (a) to find the instantaneous velocity v when t = 1.

9. (10 points) Use the Intermediate Value Theorem to show that the equation $\cos x = x^2$ has at least two real roots in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

10. (10 points) The tangent line T to the graph of y = f(x) at the point P(a, 3) passes through the point (4, -9). If f'(a) = 6, find the equation of the line perpendicular to T at P. [write your answer in the form $y - y_1 = m(x - x_1)$]