MATH 596 - 101

2. Техтвоок

Irena Swanson and Craig Huneke, INTEGRAL CLOSURE OF IDEALS, RINGS, AND MODULES, LMS Lecture Series, Vol. 336, Cambridge University Press, New York, 2006.

3. Syllabus

WEEK	MATERIAL	
1	1 . What is integral closure of ideals: Basic properties; Integral closure	
	via reductions; Integral closure of an ideal	
2	Monomial ideals; Dedekind-Mertens formula	
3	2. Integral closure of rings: Lying-over, incomparability, going-up,	
	and going-down; Integral closure and grading	
4	3. Separability: Algebraic separability; General separability; Relative	
	algebraic closure	
5	4. Noetherian rings: Principal ideals; Normalization theorems;	
	Complete rings; Jacobian ideals	
6	Serre's conditions; Affine and Z-algebras; Absolute integral closure;	
	Absolute integral closure	
7	Finite lying-over and height; Dimension one; Krull domains	
8	5. Rees algebras: Rees algebras constructions; Integral closure of Rees	
	algebras; Integral closure of powers of an ideal	
9	Powers and formal equidimensionality; Defining equations of Rees	
	algebras; Blowing up	
10	6. Valuations: Valuations and the integral closure of ideals	
	7. Derivations: Analytic approach	
11	8. Reductions: Basic properties and examples; Connections with Rees	
	algebras; Minimal reductions; Reducing to infinite residue fields	
12	Superficial elements; Superficial sequences and reductions; Non-local	
	rings	
13-14	12. The conductor: The Lipman-Sathaye theorem	
	13 . The Briancon-Skoda Theorem: Tight closure; Briancon-Skoda via	
	tight closure	
14-15	The Lipman-Sathaye; General version	

4. GRADING POLICY

Presentations	100
Take-home Exam (15 Problems)	100