Department of Mathematics & Statistics, KFUPM Math 590/690 Syllabus (101) Dr. K. M. Furati

Course Title:	Fractional Differential Equations		
Course Description:	Related special functions and spaces. Definitions of fractional derivatives and integrals. Properties, mapping, and spaces of the fractional integral and differential operators. Transform methods for solving fractional differential equations. Applications.		
Prerequisite:	Graduate level		
Textbook:	Podlubny I., Fractional Differential Equations. Academic Press; 1999.		
Learning Outcomes:	To have basic knowledge on applying fractional calculus tools in research problems. In particular, students will learn analytical techniques for solving basic fractional order differential equations.		
Assignment:	Homework, exams, literature review and projects.		
M / - I			

Webpage	http://faculty.kfupm.edu.sa/math/kmfurati

# weeks	Торіс	Details	Chapter
2	Special Functions and Symbols	Gamma & Beta functions, Mittag Leffler function	1.1, 1.2
	Spaces of integrable and differentiable functions	Integrable, continuously differentiable, absolutely continuous, fundamental theorem of integral calculus	Notes
5	Fractional Integrals and Fractional Derivatives	Grunwald-Letnikov approach	2.2
		Riemann-Liouville approach	2.3
		Caputo derivatives.	2.4.1
		Properties (Formulas 2.202, 2.211, 2.217 only)	2.7
		Geometric and physical interpretation	Handout
1	Transforms	Laplace, Fourier, and Mellin transforms	2.8-2.10
2	Existence and Uniqueness Theorems	Sequential Derivatives, equation of general form, existence and uniqueness, and stability.	3
1	Laplace transform method	Standard and sequential FDE	4
2	Other Methods	Mellin transform, power series, and Babenko's symbolic calculus method	6.1-6.3
1	Numerical Evaluation of Fractional Derivative	Fractional difference approach, short- memory principle, order of approximation	7.1-7.4
1	Applications: Projects		10