Math 590/690 (101) Applied Fractional Calculus

Midterm Exam

- (1) Show that if $f \in AC[a, b]$ then $f = I_a^{\alpha} D_a^{\alpha} f$ for all $0 < \alpha < 1$. What happens if $\alpha > 1$?
- (2) Consider the equation

$$D_0^{\sqrt{2}}u(t) = 4, \quad t > 0.$$

- (a) Find the general solution.
- (b) Find the general solution which is bounded at t = 0.
- (3) Define the space of functions:

$$S^{\alpha}(a,b) = \left\{ f \in L^{1}(a,b) : \quad I_{a}^{n-\alpha} f \in AC^{n}[a,b] \right\}, \quad n = -[-\alpha], \quad \alpha > 0.$$

A function $f \in S^{\alpha}(a, b)$ is said to have a summable fractional derivative.

Consider the function

$$f(t) = \begin{cases} 1, & 0 \le t \le 2, \\ 0, & 2 < t < T. \end{cases}$$

- (a) Show that $f(t) \in S^{\alpha}(0,T)$ for $0 < \alpha < 1$.
- (b) Calculate $I_0^{\alpha} D_0^{\alpha} f(t)$ for $0 < \alpha < 1$.
- (4) Use Formula (2.202) to evaluate $D_2^{1/2}(t\sqrt{t-2})$.
- (5) Verify Formula (2.211) for the function $K(t, \tau) = (t \tau)^{-1/2}$.
- (6) Show that the limit in (2.217) is not true in general.