King Fahd University of Petroleum & Minerals

Department of Mathematics and Statistics

Math550 "Linear Algebra"

Semester 101 (Fall 2010)

Dr. Jawad Y. Abuhlail

Final Exam (24.1.2011)

Duration: 3 hours

Remark: Give *self-contained* proofs and arguments. Work out all details of examples/counterexamples.

Part I: Solve any 2 of Q1-Q3.

Q1. (15 points) Let V be an inner product space. A linear operator $T: V \longrightarrow V$ is said to be an *isometry*, or a *distance-preserving transformation*, iff

 $||T(\alpha)|| = ||\alpha||$ for every $\alpha \in V$.

(a) Show that $T \in \mathcal{L}(V, V)$ is an isometry if and only if

 $\langle T(\beta) \mid T(\gamma) \rangle = \langle \beta \mid \gamma \rangle$ for all $\beta, \gamma \in V$.

(b) Provide two *types* of isometries on $V = \mathbb{R}^2$ and interpret them geometrically.

Q2. (15 points) An $n \times n$ real matrix $A = (a_{ij})$ is said to be a Markov matrix iff

$$a_{ij} \ge 0$$
 for all $1 \le i, j \le n$ and $\sum_{j=1}^{n} a_{ij} = 1$ for all $1 \le i \le n$.

Show that

(a) If A and B are Markov matrices, then AB is a Markov matrix.

(b) If λ is a characteristic value of a Markov matrix, then $|\lambda| \leq 1$.

(c) If $a_{ij} > 0$ for all $1 \le i, j \le n$, then nullity(A - I) = 1.

Q3. (15 points) Let V be an n-dimensional vector space and $S, T : V \longrightarrow V$ be linear transformations.

(a) Show that $\operatorname{nullity}(S+T) \ge \operatorname{nullity}(S) + \operatorname{nullity}(T) - n$.

(b) Are there non-zero linear transformations S, T for which we have equality in (a)?

(c) Show that $\max\{\text{nullity}(S), \text{nullity}(T)\} \le \text{nullity}(ST) \le \text{nullity}(S) + \text{nullity}(T)$.

Part II: Prove any 2 of the theorems in Q4-Q6.

Let V be a finite dimensional vector space over the field \mathbb{F} and $T: V \longrightarrow V$ a linear operator with characteristic polynomial f(x) and minimal polynomial p(x).

Q4. (15 points) *T* is trinagularble if and only if p(x) is a product of linear polynomials over \mathbb{F} .

Q5. (15 points) T is diagonalizable if and only if p(x) is a product of distinct linear polynomials over \mathbb{F} .

Q6. (15 points) p(x) divides f(x) and both have the same prime factors in $\mathbb{F}[x]$.

Part III: Solve each of Q7 & Q8:

Q7. (20 points) Let

$$A = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

a) Show that A is triangulable but not diagonalizable.

b) Find the Jordan Canonical Form of A.

c) Find an invertible matrix P such that $P^{-1}AP$ is in JCF.

Q8. (20 points) Prove or disprove each of the following statements:

(a) There exists a real 3×3 matrix A such that $A^2 = -I$.

(b) There exists a matrix A such that $ch(A) = (x-3)^8$, $min(A) = (x-3)^4$ and $nullity(A-3I) = 3 = nullity(A-3I)^2$.

(c) If $\{\alpha_1, \dots, \alpha_n\}$ is any orthonormal basis for \mathbb{R}^n , then for any β we have

$$\sum_{i=1}^{k} <\beta, \alpha_i > \leq ||\beta||^2 \text{ for each } 1 \leq k \leq n.$$

(d) If $f, g: [a, b] \longrightarrow \mathbb{R}$ are continuous, then

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \left(\int_{a}^{b} f^{2}(x)dx\right)\left(\int_{a}^{b} g^{2}(x)dx\right)$$

e) If V is an inner product space and $W \leq V$ is a subspace, then $W = (W^{\perp})^{\perp}$.

Part IV: Bonus (10 points)

Give an example of an inner product space V and two subspaces $W_1, W_2 \leq V$ such that $W_1^{\perp} + W_2^{\perp} \subsetneq (W_1 \cap W_2)^{\perp}$.

GOOD LUCK