King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH-480 Linear and Nonlinear Programming ¹ Solution Major Exam 2

Exercice 1 (35 pts)

Given the following pair of linear programs:

$$\begin{array}{lll} \max\limits_{x,y} & z=x+2y & \min\limits_{\alpha,\beta} & \gamma=\alpha+3\beta \\ \text{s.t} & y\leq\frac{1}{3}, & \text{s.t} & \beta\geq 1 \\ & x+y\leq 1, & \alpha+\beta\geq 2 \\ & x,y\geq 0 & \alpha,\beta\geq 0. \end{array}$$

- (a) Solve each linear program graphically. (10pts) The optimal solution the first program is: $x^* = \frac{2}{3}$, $y^* = \frac{1}{3}$ and the optimal objective is $z^* = \frac{4}{3}$. The optimal solution the second program is: $\alpha^* = 1$, $\beta^* = 1$ and the optimal objective is $\gamma^* = 4$.
- (b) Is there any relation between these two linear programs. (5pts) There is a Primal-Dual relation between the two linear programs.
- (c) Write the complementary slackness conditions corresponding to these two linear programs. (10pts)

The complementary slackness conditions corresponding to the two linear programs can be expressed:

$$(\alpha,\beta)\left[\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)\left(\begin{array}{c} x \\ y \end{array}\right) - \left(\begin{array}{c} \frac{1}{3} \\ 1 \end{array}\right)\right] = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

(d) Propose a method to linearize these complementary slackness conditions. (10pts)

To linearize these conditions we introduce the binary vector of variables u and two real parameters K and L arbitrarily chosen with K < 0 and L > 0.

Conditions written in (c) can then be written as follows:

$$\left[\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) - \left(\begin{array}{c} \frac{1}{3} \\ 1 \end{array} \right) \right] \ge K \left(\begin{array}{c} u_1 \\ u_2 \end{array} \right)$$

 $^{^{1}\}mathrm{Dr.}$ Slim Belhaiza (c), 22 December, 2010

$$\begin{split} \left[\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) - \left(\begin{array}{c} \frac{1}{3} \\ 1 \end{array} \right) \right] & \leq \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \\ \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) & \leq L(1\!\!1 - u), \\ \beta & \geq 1 \\ \alpha + \beta & \geq 2 \\ x, y & \geq 0, \\ \alpha, \beta & \geq 0. \end{split}$$

Exercice 2

Consider the following linear program:

$$\max_{x_1, x_2, x_3} \quad 3x_1 + 2x_2 + x_3$$

s.t
$$x_1 + x_2 + 2x_3 \le 3,$$

$$x_1 - x_2 + x_3 \ge 2,$$

$$2x_1 + x_2 + x_3 \le 4,$$

$$x_1, x_2, x_3 \ge 0.$$

(a) Solve the linear program using the Primal Simplex algorithm.

Solving the program:

Here is the first Simplex Tableau;

	Basis	x_1	x_2	x_3	e_1	e_2	e_3	a	b_j	$\left \frac{b_j}{c_{pj}} \right $
	e_1	1	1	2	1	0	0	0	3	3
	a	1*	-1	1	0	-1	0	1	2	2
	e_3	2	1	1	0	0	1	0	4	2
Ī	RC	$3 + M^*$	2-M	1+M	0	-M	0	0	Z = -2M	

Here is the second Simplex Tableau;

Basis	x_1	x_2	x_3	e_1	e_2	e_3	a	b_{j}	$\frac{b_j}{c_{pj}}$
e_1	0				1			1	$\frac{1}{2}$
x_1	1	-1	1	0	-1	0	1	2	_
e_3	0	3	-1	0	2	1	-2	0	0
RC	0	5	-2	0	3	0	-(3+M)	Z=6	

Even with another iteration the solution will not be improved; $Z^* = 6$, $x_1^* = 2$, $e_1^* = 1$ and all other variables equal to 0.

Here is the last $Simplex\ Tableau$;

Ba	sis	x_1	x_2	x_3	e_1	e_2	e_3	a	b_{j}	$\frac{b_j}{c_{pj}}$
e	1	0	0	$\frac{5}{3}$	1	$-\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{3}$	1	$\frac{1}{2}$
x	1	1	0	$\frac{2}{3}$	0	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	2	_
x	2	0	1	$-\frac{1}{3}$	0	$\frac{2}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	0	0
R	$\overline{\mathrm{C}}$	0	0	$-\frac{1}{3}$	0	$-\frac{1}{3}$	$-\frac{5}{3}$	< 0	Z=6	

(b) Solve the linear program using the Dual Simplex algorithm.

Here is the first Dual Simplex Tableau;

Basis	x_1	x_2	x_3	e_1	e_2	e_3	b_{j}
e_1	1	1	2	1	0	0	3
e_2	-1	1	-1^{*}	0	1	0	-2^{*}
e_3	2	1	1	0	0	1	4
RC	3	2	1*	0	0	0	

Here is the second Dual Simplex Tableau;

Basis	x_1	x_2	x_3	e_1	e_2	e_3	b_{j}
e_1	-1^*	3	0	1	2	0	-1^*
x_3	1	-1	1	0	-1	0	2
e_3	1	2	0	1	1	1	2
RC	2*	3	0	0	1	0	

Here is the third Dual Simplex Tableau;

Basis	x_1	x_2	x_3	e_1	e_2	e_3	b_j
x_1	1	-3	0	-1	-2	0	1
x_3	0	2	1	1	1	0	1
e_3	0	5	0	1*	3	1	1
RC	0	9	0	2*	5	0	Z=4

The solution is primal feasible but not optimal as the reduced cost are not all negative.

Here is the first Simplex Tableau;

The solution is optimal.

Basis	x_1	x_2	x_3	e_1	e_2	e_3	b_j
x_1	1	2	0	0	1	1	2
x_3	0	-3	1	0	-2	-1	0
e_1	0	5	0	1	3	1	1
RC	0	-1	0	0	-1	0	Z=6

Exercice 3

Consider the following nonlinear program:

$$\min_{x,y} f(x,y) = x^2 - 3x^2y^2 + 2y^2$$

where x and y are real decision variables.

(a) Give the first order optimality conditions and find **all points** satisfying these conditions.

$$\frac{\partial f}{\partial x} = 2x - 6xy^2 = 0$$

$$\frac{\partial f}{\partial y} = -6x^2y + 4y = 0$$

There are 5 points satisfying these conditions: $(0,0), (\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}), (-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}), (\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}), (\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}})$ and $(-\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}).$

(b) Give the second order optimality conditions.

 $d^t \nabla^2 f(x,y) d \ge$ to have a minimum.

(c) Conclude on the optimality of each point found in (a).

The only relative minimum here is (0,0) as $d^t \nabla^2 f(0,0) d = 2d_1^2 + 4d_2^2 > 0$.

5