KFUPM	
Department of Mathematics and Statistics	
MATH 302-4	
Quiz 1, Term 101	

Instructor: Prof.Dr. Othman Echi

Exercise 1. Let U = (1, 1, 0) and $V = (1, 1, \sqrt{2})$.

- (1) Evaluate the angle between the two vectors U and V.
- (2) Evaluate the area of the parallelogram defined by the vectors U and V.

Exercise 2. Let U = (-1, 2, 1), V = (2, 1, 1) and $S = \{W = (x, y, z) \in \mathbb{R}^3 \mid U \cdot W = 0 \text{ and } V \cdot W = 0\}.$

- (1) Show that S is a subspace of \mathbb{R}^3 .
- (2) Find a basis of S.

SOLUTIONS

Ex. 1. The angle between two nonzero vectors U, V is the real number $\theta \in [0, \pi]$ such that

$$\cos(\theta) = \frac{U \cdot V}{||U|| \times ||V||} \; .$$

The area of the parallelogram defined by the two vectors is

$$\mathcal{A}(U,V) = ||U|| \times ||V|| \sin(\theta) \text{ (unit}^2)$$

In our case, $\cos(\theta) = \frac{1}{\sqrt{2}}$. Hence $\theta = \frac{\pi}{4}$ and consequently,

$$\mathcal{A}(U,V) = \sqrt{2} \times \sqrt{4} \times \frac{1}{\sqrt{2}} = 2 \text{ (unit}^2).$$

∟		_

Ex. 2.

1.

 $-\operatorname{As}\,U\cdot 0_{_{\mathbb{R}^3}}=V\cdot 0_{_{\mathbb{R}^3}}=0,\,\text{we get}\,\, 0_{_{\mathbb{R}^3}}\in S.$

- Let W_1, W_2 be two elements of S. Then

$$U \cdot W_1 = V \cdot W_1 = U \cdot W_2 = V \cdot W_2 = 0$$

This leads to

$$U \cdot (W_1 + W_2) = U \cdot W_1 + U \cdot W_2 = 0 + 0 = 0,$$

and

$$V \cdot (W_1 + W_2) = V \cdot W_1 + V \cdot W_2 = 0 + 0 = 0$$

It follows that $W_1 + W_2 \in S$.

– Now, let $W \in S$ and $\alpha \in \mathbb{R}$. Then

$$U \cdot (\alpha W) = \alpha U \cdot W = \alpha \times 0 = 0,$$

and

$$V \cdot (\alpha W) = \alpha V \cdot W = \alpha \times 0 = 0.$$

This implies that $\alpha W \in S$.

Therefore, S is a subspace of \mathbb{R}^3 .

2. Let $W = (x, y, z) \in \mathbb{R}^3$. Then $W \in S$ if and only if the following equations are satisfied

$$-x + 2y - z = 0$$
 and $2x + y + z = 0$.

This gives y = 3x and z = -5x. Thus, W = (x, y, z) = (x, 3x, -5x) = x(1, 3, -5). We conclude that $\mathcal{B} = \{(1, 3, -5)\}$ is a basis of S.