King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 302 Exam II

Semester (101) December 9, 2010 Time: 12:30 - 14:15 pm

Problem	Points
1	8
2	8
3	12
4	10
5	12
Total	50

Problem 1.

- (a) Let φ be the scalar field defined by $\varphi(x, y, z) = x^2 y z$. Compute grad(φ) and curl(grad(φ)).
- (b) Let F be the vector field defined by

 $F(x, y, z) = (y + e^y, z + e^z, x + e^x).$

Is there a scalar field ψ with continuous first and second partial derivatives such that $F = \operatorname{grad}(\psi)$?

 $\mathbf{2}$

Problem 2. Find the length of the curve C given by

$$y = 2x^2 - \frac{1}{16}\ln x, \quad 1 \le x \le 3.$$

Problem 3. Let $C = C_1 \cup C_2 \cup C_3$ be the positively oriented closed path in \mathbb{R}^2 , with 3 smooth pieces:

- C_1 : the straight line segment joining (0,0) and (1,0).
- C_2 : the quarter circle (of center the origin) joining (1,0) and (0,1).
- C_3 : the straight line segment joining (0, 1) and (0, 0).

A vector field is given by $F(x, y) = (x + y)\mathbf{i} + y\mathbf{j}$.

Verify Green's theorem, by computing the line and the double integrals.

Problem 4. Let Σ be the surface of \mathbb{R}^3 given by $z = x + 2y^2$, with $0 \le x \le 1$ and $0 \le y \le \sqrt{6}$. Evaluate the surface integral

$$I = \int \int_{\Sigma} \int y d\sigma.$$

Problem 5. Let Σ be the closed surface which consists of the part of the cylinder $z^2 + x^2 = 4$ lying in the first octant and the parts of the planes y = 0, y = 3, z = 0, x = 0, as shown in the figure

Given a field F by $F(x, y, z) = xz^2 \mathbf{i} + (x^2 - z + y)\mathbf{j} + zx^2 \mathbf{k}$. Evaluate the flux of F across Σ

$$Q = \int \int_{\Sigma} F.n \ d\sigma.$$

6