King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Semester (101) January 26, 2011 Time: 07:00 - 09:30 pm

Name:

ID:

Section: ...

Problem	Points
1	5
2	5
3	5
4	5
5	5
6	5
7	5
Total	35

Problem 1. Consider the matrix

$$A = \left(\begin{array}{rrrr} -1 & 1 & 1\\ 1 & -1 & 1\\ 1 & 1 & -1 \end{array}\right).$$

- (a) Find the eigenvalues of A.
- (b) Find a nonsingular matrix ${\cal P}$ that diagonalizes ${\cal A}.$

Problem 2. Given a vector field

$$F(x, y, z) = \frac{y}{1+xy}\mathbf{i} + \frac{x}{1+xy}\mathbf{j} + \frac{1}{z}\mathbf{k},$$

for $x \ge 0, y \ge 0$ and z > 0.

- (a) Show that F is conservative.
- (b) Find a potential ϕ of F.
- (c) Evaluate the integral $\int_{\Gamma} F.dR$, where Γ is the line segment joining the point A = (0, 0, 1) and B = (1, 1, 2).

Problem 3. Given the cone $\Sigma = \{(x, y, z) : 0 \le z = 2 - \sqrt{x^2 + y^2}\}$ and the vector field $F(x, y, z) = y\mathbf{i} + xy\mathbf{j} + e^{-z^2}\mathbf{k}$. Evaluate the integral

$$\int \int_{\Gamma} \operatorname{Curl}(F) \cdot \mathbf{n} d\sigma,$$

where **n** is the unit outer normal to Σ .

4

Problem 4. Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be a differentiable complex function such that $\operatorname{Re}(f(z)) = x^2 - y^2$, for z = x + iy. Use Cauchy Riemann Equations to find $\operatorname{Im}(f(z))$.

Problem 5. Use Cauchy integral Formula to evaluate the integral

$$\oint_{\Gamma} \frac{1 + \cos(iz)}{z(z+1)^2} dz,$$

where Γ is the positively oriented circle given by $|z+1| = \frac{1}{2}$.

Problem 6. Find Laurent series of the function $f(z) = z^5 \sin(\frac{1}{z^2})$ about 0 and use it to compute the integral

$$\oint_C f(z)dz,$$

where C is the positively oriented circle of center 0 and radius r > 0.

Problem 7. Let $f(z) = \frac{z^2 + z + 1}{\sin z}$ and Γ be the positively oriented circle of center 0 and radius 4.

Use Residue Theorem to evaluate the integral $\oint_{\Gamma} f(z) dz$.