KFUPM October 11, 2010

Department of Mathematics and Statistics

MATH 302-2

Quiz 1, Term 101

NAME:			
ID :			
	Instructor:	Prof.Dr. Othman	Echi

Exercise 1. Let U = (1, 1, 0) and $V = (1, 1, \sqrt{6})$.

- (1) Evaluate the angle between the two vectors U and V.
- (2) Evaluate the area of the parallelogram defined by the vectors U and V.

Exercise 2. Let U=(1,1,-1), V=(-1,1,2) and $S=\{W=(x,y,z)\in\mathbb{R}^3\mid U\cdot W=0 \text{ and } V\cdot W=0\}.$

- (1) Show that S is a subspace of \mathbb{R}^3 .
- (2) Find a basis of S.

SOLUTIONS

Ex. 1. The angle between two nonzero vectors U,V is the real number $\theta \in [0,\pi]$ such that

$$\cos(\theta) = \frac{U \cdot V}{||U|| \times ||V||} .$$

The area of the parallelogram defined by the two vectors is

$$\mathcal{A}(U, V) = ||U|| \times ||V|| \sin(\theta) \text{ (unit}^2)$$

In our case, $\cos(\theta) = \frac{1}{2}$. Hence $\theta = \frac{\pi}{3}$ and consequently,

$$\mathcal{A}(U, V) = \sqrt{2} \times \sqrt{8} \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \text{ (unit}^2).$$

Ex. 2.

1.

 $-\operatorname{As}\,U\cdot 0_{\scriptscriptstyle{\mathbb{P}^3}}=V\cdot 0_{\scriptscriptstyle{\mathbb{P}^3}}=0,\,\text{we get}\,\,0_{\scriptscriptstyle{\mathbb{P}^3}}\in S.$

- Let W_1, W_2 be two elements of S. Then

$$U \cdot W_1 = V \cdot W_1 = U \cdot W_2 = V \cdot W_2 = 0.$$

This leads to

$$U \cdot (W_1 + W_2) = U \cdot W_1 + U \cdot W_2 = 0 + 0 = 0,$$

and

$$V \cdot (W_1 + W_2) = V \cdot W_1 + V \cdot W_2 = 0 + 0 = 0.$$

It follows that $W_1 + W_2 \in S$.

– Now, let $W \in S$ and $\alpha \in \mathbb{R}$. Then

$$U \cdot (\alpha W) = \alpha U \cdot W = \alpha \times 0 = 0,$$

and

$$V \cdot (\alpha W) = \alpha V \cdot W = \alpha \times 0 = 0.$$

This implies that $\alpha W \in S$.

Therefore, S is a subspace of \mathbb{R}^3 .

2. Let $W = (x, y, z) \in \mathbb{R}^3$. Then $W \in S$ if and only if the following equations are satisfied

$$x + y - z = 0$$
 and $-x + y + 2z = 0$.

This gives z = -y and x = -3y. Thus, W = (x, y, z) = (-3y, y, -2y) = (-y)(3, -1, 2). We conclude that $\mathcal{B} = \{(3, -1, 2)\}$ is a basis of S.