
King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 302 Exam I

Semester (101) November 3, 2010 Time: 05:30 - 07:00 pm

Name: .................................. I.D: ................ Section: .......

Problem Points

1 / 15

2 / 10

3 / 15

4 /10

Total / 50



2

Problem 1. Let α be a real number and A be the matrix defined by

A =




1 1 1
1 0 α
1 1 α2


 .

(a) Show that A is row-equivalent to


1 0 α
0 1 1− α
0 0 α2 − 1


 .

(b) Discuss the rank of A according to the values of α.

(c) For α = 1, find a basis of the solution space of the homogeneous system

A




x1

x2

x3


 =




0
0
0


 .

Solution.

(a) We do the following elementary row-operations:

A
R12−→




1 0 α
1 1 1
1 1 α2


 R2−R1−−− −→

R3−R1




1 0 α
0 1 1− α
0 1 α2 − α


 R3−R2−→




1 0 α
0 1 1− α
0 0 α2 − 1


 ,

as desired.

(b) – If α = ±1, then rank(A) = 2.

– If α 6= ±1, then rank(A) = 3.

(c) The system

A




x1

x2

x3


 =




0
0
0




is equivalent to 


1 0 α
0 1 1− α
0 0 α2 − 1







x1

x2

x3


 =




0
0
0


 ,

that is to say

{
x1 + x3 = 0
x2 = 0

Hence X =




x1

x2

x3


 =




x1

0
−x1


 = x1




1
0
−1


 .

Therefore,

B = {(1, 0,−1)} is a basis of the space of solutions of the homogeneous system

AX = 0.
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Problem 2. Let M =




1 1 1
1 0 2
1 1 4


 .

(a) Find the inverse of M .

(b) Solve the nonhomogeneous system

M




x1

x2

x3


 =




1
1
1


 .

Solution.

(a) We reduce the matrix B = [M
...I3]

[M
...I3] =




1 1 1
... 1 0 0

1 0 2
... 0 1 0

1 1 4
... 0 0 1




R12−→




1 0 2
... 0 1 0

1 1 1
... 1 0 0

1 1 4
... 0 0 1




R2−R1−− −→
R3−R1




1 0 2
... 0 1 0

0 1 −1
... 1 −1 0

0 1 2
... 0 −1 1




R3−R2−→




1 0 2
... 0 1 0

0 1 −1
... 1 −1 0

0 0 3
... −1 0 1




1
3
R3−→




1 0 2
... 0 1 0

0 1 −1
... 1 −1 0

0 0 1
... −1

3
0 1

3




R1−2R3−− −→
R2+R3




1 0 0
... 2

3
1 −2

3

0 1 0
... 2

3
−1 1

3

0 0 1
... −1

3
0 1

3


 .

Consequently, M = is invertible and and

M−1 =




2
3

1 −2
3

2
3

−1 1
3

−1
3

0 1
3




.

(b) The system

M




x1

x2

x3


 =




1
1
1






4

is equivalent to 


x1

x2

x3


 = M−1




1
1
1


 =




1
0
0


 .

Problem 3. Consider the matrix A =




3 0 k
0 3 3
−1 −3 −3


 .

(a) Find all the real values of k for which A is not diagonalizable.

(b) For k = 1, find all the eigenvalues of A.

Solution. The characteristic polynomial of A is

PA(λ) = det(λI3 − A) =

∣∣∣∣∣∣

λ− 3 0 −k
0 λ− 3 −3
1 3 λ + 3

∣∣∣∣∣∣

= (λ− 3)

∣∣∣∣
λ− 3 −3

3 λ + 3

∣∣∣∣ + (−k)

∣∣∣∣
0 λ− 3
1 3

∣∣∣∣

= (λ− 3)((λ− 3)(λ + 3) + 9)− k(−(λ− 3))

= (λ− 3)(λ2 − 9 + 9 + k)

= (λ− 3)(λ2 + k).

Hence the eigenvalues of A are 3, ±√−k, where
√−k is a complex number such

that its square is −k.

We know that, if the eigenvalues of A are pairwise distinct, then A is

diagonalisable. So, in order to get A not diagonalisable, it is necessary

that one of its eigenvalues is multiple(repeated). In our case, we must

have k = −9 or k = 0.

• Suppose that k = 0. Then 0 is a double eigenvalue (of multiplicity 2). Let us

find the dimension of the eigenspace ker(A− 0I3) associated with 0.

It suffices to find the rank of A−0I3. Hence, we will reduce the matrix A−0I3 = A.

By performing the following elementary row-operations

(1) 1
3
R1,

1
3
R2

(2) R3 + R1

(3) −1
3
R3

(4) R3 −R2

This leads to the following reduced matrix




1 0 0
0 1 1
0 0 0


 .
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Consequently, the dimension of the eigenspace ker(A−0.I3) is 3−rank(A−0.I3) =

3− 2 = 1, which does not equal to the multiplicity of 0. This implies that A is not

diagonalisable.

• Suppose that k = −9. Then 3 is a double eigenvalue (of multiplicity 2) of A.

In order to find the dimension of the eigenspace ker(A − 3I3) associated with 3, it

suffices to reduce A− 3I3.

A− 3I3 =




0 0 −9
0 0 3
−1 −3 −6


 .

Just perform the following elementary row-operations

(1) R13

(2) −1
9
R3,

1
3
R2, (−1)R1

(3) R3 −R2

(4) R1 − 6R2

to get the following reduced matrix




1 3 0
0 0 1
0 0 0


 .

Therefore, rank(A − 3I3) = 2, and consequently dim(ker(A − 3I3)) = 3 − 2 = 1,

which is not equal to the multiplicity of 3; showing that A is not diagonalisable.

Of course, if k 6∈ {−9, 0}, the the eigenvalues of A are distinct; and consequently,

A is diagonalisable.

Conclusion. A is not diagonalisable if and only if k ∈ {−9, 0}.

Problem 4.

(a) Let A be an orthogonal and symmetric real matrix. Show that, if λ is an

eigenvalue of A then λ = ±1.

(b) Check the above result by considering the matrix

A =




1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2


 .

(c) Is A diagonalizable? why?

Solution.

(a). Since A is symmetric and orthogonal, we have A = At and AAt = In. Hence,

A2 = In. Let λ be an eigenvalue of A; then there exists a non zero vector U of Rn such

that AU = λU . Multiplying by A from the left, we get A2U = λAU = λ(λU) = λ2U .

But, as A2 = In, we get U = λ2U ; this leads to (1 − λ2)U = 0. Now, as U is a

nonzero vector, we deduce that 1− λ2 = 0; that is to say λ = ±1.

(b). It is easily seen that A is a real symmetric orthogolnal matrix.

The characteristic polynomial of A is
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PA(λ) = det(λI3 − A) =

∣∣∣∣∣∣

λ− 1 0 0
0 λ− 1√

2
− 1√

2

0 − 1√
2

λ + 1√
2

∣∣∣∣∣∣

= (λ− 1)((λ− 1√
2
)(λ + 1√

2
)− 1

2
)

= (λ− 1)(λ2 − 1
2
− 1

2
)

= (λ− 1)(λ2 − 1)
= (λ− 1)2(λ + 1).

Thus the eigenvalues of A are ±1; and the previous result of (a) is checked.

(c). Any real symmetric matrix is diagonalisable.


