King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Final Exam The First Semester of 2010-2011 (101)

Time Allowed: 150 Minutes

Name:	ID#:		
Instructor:	Sec #: Serial #:		

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		10
2		12
3		16
4		20
5		20
6		15
7		15
Total		108

Q:1 (a) (5 points) Find Laplace transform $\mathcal{L}\left\{f(t)\right\}$ where

$$f(t) = \begin{cases} 0 & \text{if } 0 \le t < 1\\ t^2 & \text{if } t \ge 1 \end{cases}$$

.

(b) (5 points) Find inverse Laplace transform $\mathcal{L}^{-1}\left\{\frac{e^{-2s}}{s^2(s-1)}\right\}$.

Q:2 (12 points) Let $\vec{F}(x, y, z) = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{x^2 + y^2 + z^2}$ and D is the region bounded by the concentric spheres $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 4$. Use divergence theorem to evaluate $\iint_S \left(\vec{F} \cdot \hat{n}\right) dS$.

 ${\bf Q:3}$ (16 points) Use separation of variables method to find the nontrivial solution of the heat equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad 0 < x < 1, \quad t > 0$$

subject to the boundary and initial conditions

$$u(0,t) = 0, u(1,t) = 0, t > 0$$

 $u(x,0) = 10, 0 < x < 1.$

 ${\bf Q:4}$ (20 points) Use separation of variables method to find the nontrivial solution of the wave equation

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{\partial^2 u}{\partial t^2}, \ 0 < r < 2, \ t > 0$$

subject to the boundary conditions

$$\begin{aligned} u\left(2,t\right) &= 0, \ t > 0\\ u\left(r,0\right) &= 1, \ \left.\frac{\partial u}{\partial t}\right|_{t=0} = 0, \ 0 < r < 2 \end{aligned}$$
 bounded at $r = 0$

solution is bounded at r = 0.

Q:5 (20 points) Find the steady-state temperature $u(r, \theta)$ in a sphere of radius 2 by solving the problem

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\cot \theta}{r^2} \frac{\partial u}{\partial \theta} = 0, \quad 0 < r < 2, \ 0 < \theta < \pi,$$

subject to the boundary condition

$$u(2,\theta) = 1 + \cos(\theta), \quad 0 < \theta < \pi.$$

Q:6 (15 points) Use Laplace transform to solve the problem

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}, \quad 0 < x < L, \ t > 0$$

subject to the boundary and initial conditions

$$\begin{array}{lll} u \left(0, t \right) & = & 0, \quad u \left(L, t \right) = 0, \quad t > 0 \\ u \left(x, 0 \right) & = & 2 \sin (\frac{\pi x}{L}), \quad \left. \frac{\partial u}{\partial t} \right|_{t=0} = 0, \quad 0 < x < L. \end{array}$$

Q:7 (15 points) Use appropriate Fourier transform to solve the problem

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, \quad x > 0, \ t > 0$$

subject to the conditions

$$u(0,t) = 5, t > 0$$

 $u(x,0) = 0, x > 0.$