King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam I The Summer Semester of 2010-2011 (101) Time Allowed: 120 J

Time Allowed: 120 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		10
2		13
3		13
4		12
5		14
6		14
7		12
Total		88

Q:1 (a) (10 points) Evaluate the integral $\int_C x(x+y^2)dx + ydy$, along the curve C given by $x = \sqrt{2t}, y = t, \ 1 \le t \le 2.$

- **Q:2** (a) (7 points) Find the directional derivative of $f(x, y, z) = 2xz + 3xy^2 + yz^2$ at (-1, 1, 2) in the direction of $2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$.
 - (b) (6 points) Write the direction of maximum directional derivative and value of maximum directional derivative.

Q:3 (13 points) Determine whether the vector field $\vec{F}(x, y, z) = (2x \sin y + e^{3z})\mathbf{i} + (x^2 \cos y)\mathbf{j} + (3xe^{3z} + 5)\mathbf{k}$ is a gradient field. If so, find the potential function $\phi(x, y, z)$ for \vec{F} .

Q:4 (12 points) Use Green's Theorem to evaluate the integral $\oint_C 3e^{-x^2}dx + 2\tan^{-1}x \, dy$, where *C* is the positively oriented triangle with vertices (0,0), (0,2), (-2,2).

Q:5 (14 points) Find the surface area of the portions of the sphere $x^2 + y^2 + z^2 = 25$ that are within the cylinder $x^2 + y^2 = 5y$.

Q:6 (14 points) Let $\vec{F}(x, y, z) = y^3 \mathbf{i} - \mathbf{x}^3 \mathbf{j} + z^3 \mathbf{k}$. Use Stokes' theorem to evaluate the integral $\oint_C \vec{F} \cdot d\vec{r}$, where C is the trace of the cylinder $x^2 + y^2 = 1$ in the plane x + y + z = 1.

Q:7 (12 points) Let $\vec{F}(x, y, z) = y^2 z \mathbf{i} + x^3 z^2 \mathbf{j} + (z+2)^2 \mathbf{k}$ and D is the region bounded by the cylinder $x^2 + y^2 = 9$ and the planes z = 1, z = 4. Use divergence theorem to evaluate $\int \int_{S} \left(\vec{F} \cdot \hat{n}\right) ds$.