KFUPM – Department of Mathematics and Statistics – Term 101 MATH 280 Exam 2 (Due, November 24, 2010)

NAME:	ID:	Section: _01_

Exercise 1 (10 points)

Let (S) be the nonhomogeneous system given by AX = Y where A is an mxn matrix. Under which condition a linear combination of r solutions $X_1, X_2, ..., X_r$ is a solution of the system (S). Exercise 2 (15 points) Let $N = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

1-Find N^2 , N^3 .

2-Use the expression A = I + N to find A^3 .

3-Use the expression of A^3 to find A^{-1} . No other method is accepted

Exercise 3 (10 points) Find a 3x3 nonsingular matrices A and B such that A + B is a **nonzero** singular matrix.

Exercise 4 (10 points) Let $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ be a partitioned matrix.

1-Prove that if A_{11} and A_{22} are nonsingular, then A is nonsingular. 2-Find an expression of A^{-1} .

Exercise 5 (15 points)

Let V be a vector space over a field K and $\Phi: V \to V$ a homomorphism.

Let $Ker\Phi = \{x \in V \mid \Phi(x) = 0\}$ and $Im\Phi = \{\Phi(x) \mid x \in V\}$.

1-Prove that $Ker\Phi$ and $Im\Phi$ are subspaces of V.

2-Suppose that $\Phi = \Phi^2$ (equivalent to $\Phi = \Phi o \Phi$). Prove that $Ker \Phi \cap Im \Phi = \{0\}$

3-Prove that every element x of V can be uniquely expressed as x = y + z

where $y \in Ker\Phi$ and $z \in Im\Phi$

Exercise 6 (10 points)

Let V be the vector space of all real-valued continuous functions and W be the subspace of V spanned by the functions 1, $\cos x$, and $\sin x$. Find a basis and the dimension of W.

Exercise 7 (15 points) Let P_2 be the vector space of all polynomials of K[t] of degree ≤ 2 . Let $S = \{t, 1+t, t^2\}$ and $T = \{2+t, t, 1+t^2\}$. Find the transition matrix from T to S

Exercise 8 (15 points)

Let $V = M_{nxn}(R)$ be the vector space of all *nxn* matrices, *P* be a nonsingular *nxn* matrix and $\Phi: V \to V, \Phi(A) = P^{-1}AP$. Prove that Φ is an isomorphism.