King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 202

Final Exam – 2010–2011 (101) Monday, January 24, 2011

Allowed Time: 3 Hours

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 5 different MCQ problems.
- 5. Make sure that you have 5 written problems.

Part I: MCQ Problems

Question	Answer	Grade	Maximum Grade
1			12
2			12
3			12
4			12
5			12
Total:			60

Part II: Written Problems

Question #	Grade	Maximum Points
6		20
7		22
8		15
9		15
10		12
Total:		84

MCQ Problems:

Answer Counts:

Q		V1	V2	V3	V4
1		b	е	a	a
2		С	b	b	С
3	2.1	a	d	С	d
4		С	е	b	d
5	8	С	С	С	С

6. Find the recurrence relation determining the coefficients of the power series solution:

$$y'' - xy' + 3y = 0$$

about the point x = 0.

. Clearly o is our ordinary point. (02) . Let $y = \sum_{n=0}^{\infty} C_n x^n$, so $y' = \sum_{n=1}^{\infty} n C_n x^n$, $y'' = \sum_{n=2}^{\infty} n(n-1) C_n x^n$ Thus $y'' - x(y' + 3y = \sum_{n=2}^{\infty} n(n-1)C_n x^{n-2} - \sum_{n=1}^{\infty} nC_n x^n + \sum_{n=0}^{\infty} 3C_n x^n = 0$ $SO \sum_{k=0}^{\infty} (k+2)(k+1) C_{k+2} x^{k} - \sum_{k=1}^{\infty} k C_{k} x^{k} + 3C_{0} + 3\sum_{k=1}^{\infty} C_{k} x^{k} = 0$ $2C_2 + 3C_0 + \sum_{k=1}^{\infty} \left[(k+1)(k+2)C_{k+2} - kC_k + 3C_k \right] x^k = 0$ $=0 \begin{cases} 3C_0 + 2C_2 = 0 \\ (k+1)(k+2)C_{k+2} + (3-k)C_k = 0, k=1,2,-- \end{cases}$ Hence $C_2 = -\frac{3}{2}C_0$ (3) $C_{k+2} = \frac{(k-3)}{(k+1)(k+2)}C_k$, k = 1,2,3,---

7. Consider the following differential equation:

$$3xy'' + 2y' - y = 0.$$

- (a) Is there any singular point associated to the differential equation? If yes, find it.
- (b) Give the indicial equation and its roots.
- (c) Find the power series solution associated to the largest indicial root.

a. The standard form is $y'' + \frac{2}{3x}y' + \frac{1}{3x}y = 0$. The only singular point is $x_0 = 0$. With $P(x) = \frac{2}{3x}$, we have $xP(x) = \frac{2}{3}$ which is analytic at 0. Also with $Q(x) = \frac{1}{3x}$, we have $x^2Q(x) = \frac{x}{3}$ which is also analytic at 0. Thus $x_0 = 0$ is a regular singular point of the differential equation.

Thus $x_0 = 0$ is a regular singular point of the differential equation.

b. With the assumption that $y = \sum_{n=0}^{\infty} C_n x^{n+r}$, the indicial equation is $r(r-1) + \frac{2}{3}r = 0$. The two roots of this equation are $r_1 = \frac{1}{3}$ and $r_2 = 0$. Note that $r_1 - r_2 = \frac{1}{3}$.

c. Using the assumption $y = \sum_{n=0}^{\infty} C_n x^{n+r}$ and substituting we will have :

$$\sum_{n=0}^{\infty} 3(n+r)(n+r-1)C_n x^{n+r-1} + \sum_{n=0}^{\infty} 2(n+r)C_n x^{n+r-1} + \sum_{n=0}^{\infty} C_n x^{n+r} = 0.$$

To unify the power of x, we let p = n + 1 so $\sum_{n=0}^{\infty} C_n x^{n+r} = \sum_{p=1}^{\infty} C_{p-1} x^{p+r-1}$.

$$\Rightarrow \sum_{n=0}^{\infty} 3(n+r)(n+r-1)C_n x^{n+r-1} + \sum_{n=0}^{\infty} 2(n+r)C_n x^{n+r-1} + \sum_{n=1}^{\infty} C_{p-1} x^{p+r-1} = 0.$$

$$\Rightarrow [3r(r-1)+2r]C_0x^{r-1}+\sum_{n=1}^{\infty}x^{n+r-1}[3(n+r)(n+r-1)C_n+2(n+r)C_n+C_{n-1}]=0.$$

$$\Rightarrow [3r(r-1) + 2r] = 0 \text{ and } (n+r)(3n+3r-1)C_n + C_{n-1} = 0, \text{ for } n = 1, 2, ..., \infty.$$

Which means that :
$$C_n = -\frac{C_{n-1}}{(n+r)(3n+3r-1)}$$
 for $n = 1, 2, ..., \infty$.

Since 7= 1 is The Largest indicial root we will have:

$$c_n = -\frac{c_{n-1}}{(3n^2+n)}$$
 for $n = 1, 2, ..., \infty$.

$$n=1$$
 gives $c_1=-\frac{c_0}{4}$.

$$n=2$$
 gives $c_2=-\frac{c_1}{14}=\frac{c_0}{4\times 14}$.

$$n=3$$
 gives $c_3=-\frac{c_0}{4\times 14\times 30}$.

$$n = 4$$
 gives $c_4 = \frac{c_0}{4 \times 14 \times 30 \times 52}$.

Thus
$$y_1(x) = c_0 x^{\frac{1}{3}} \left[1 - \frac{x}{4} + \frac{x^2}{4 \times 14} - \frac{x^3}{4 \times 14 \times 30} + \frac{x^4}{4 \times 14 \times 30 \times 52} + \dots \right].$$

4

10.

8. Find the solution of the differential equation:
$$X' = AX \; ; \quad A = \left(\begin{array}{cc} 3 & -3 \\ 3 & 3 \end{array} \right).$$

• Characteristic equation:
$$\det(A-7I)=0$$
 $\det(A-7I)=\begin{vmatrix} 3-7 & -3 \\ 3 & 3-7 \end{vmatrix}=(3-7)^2+9=\lambda^2-67+18$

So The eigenvalues of A are $\lambda_1=3+3i$ and $\lambda_2=\lambda_1=3-3i$

Let $K=\begin{pmatrix} k_1 \\ k_2 \end{pmatrix}$ be The eigenvector arrociated to λ_1 , so (3)

 $(A-1)K=0=0$
 $\begin{pmatrix} -3i & -3 \\ 3 & -3i \end{pmatrix}\begin{pmatrix} k_1 \\ k_2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{3i}{3}k_1-3ik_2=0$
 $=0$
 $k_1=ik_2$, for $k_2=1=0$
 $k_1=i$

and $k=\begin{pmatrix} i \\ 1 \end{pmatrix}=\begin{pmatrix} 0 \\ 1 \end{pmatrix}+i\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$
 $=0$

9. Consider the nonhomogeneous system:

$$X' = \begin{pmatrix} 3 & -3 \\ 2 & -2 \end{pmatrix} X + F(t); \text{ where } F(t) = \begin{pmatrix} 3 \\ -2 \end{pmatrix}.$$

Let $\Phi(t) = \begin{pmatrix} 2 & 6e^t \\ 2 & 4e^t \end{pmatrix}$ be the fundamental matrix of the associated homogeneous system. Use **variation of parameters** method to find a particular solution X_p , and form the general solution.

$$\frac{1}{2} = -4e^{t} + 0$$

$$\frac{1}{2} = -4e^{t} + 0$$

$$\frac{1}{2} = -\frac{1}{4}e^{t} \begin{pmatrix} 4e^{t} - 2 \\ -6e^{t} & 2 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 2 & -3 \\ -e^{t} & e^{t} \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 191 \\ 5e^{t} \end{pmatrix} = -\frac{1}{2}$$

The General Solution is: $X(t) = X_c + X_p = C_1 \binom{2}{2} + C_2 \binom{6e^t}{4e^t} + \binom{-15-12t}{-10-12t}$ $= \binom{2}{2} \binom{1+6}{2} \binom{e^t}{4e^t} - 12t - 15$ $= \binom{2}{2} \binom{1+4}{2} \binom{e^t}{4e^t} - 12t - 10$

10. Let
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix}$$
.

- (a) Show that $A^3 = 0$.
- (b) Compute e^{At} .
- (c) Use e^{At} to find the general solution of the homogeneous linear system:

$$X' = AX.$$

$$9/A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 5 & 1 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$b) e^{At} = I + At + A^{2} + \frac{t^{2}}{2} = (2)$$

$$= (100) + (3t00) + (0000)$$

$$= (110) + (3t00) + (3t00)$$

$$= (110) + (3t00) + (3t00)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 3t & 1 & 0 \\ \frac{3}{2}t^{2}+5t & t & 1 \end{pmatrix}$$

$$C \mid X = e^{C} = \begin{pmatrix} 1 & 0 & 0 \\ 3t & 1 & 0 \\ \frac{3}{2}t^{2}+5t & t & 1 \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \end{pmatrix} \begin{pmatrix} 63 \\ c_{3} \end{pmatrix}$$

$$= \left(\frac{C_1}{3C_1t + C_2}\right) = \left(\frac{C_1}{3C_1t$$