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Math 202
Exam I — 2010-2011 (101)
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Instructions:
1. Write clearly and legibly. You may lose points for messy work.
2. Show all your work. No points for answers without justification.
3. Calculators and Mobiles are not allowed.

4. Make sure that you have 9 different problems (9 pages + cover page)

Question # Grade Maximum Points

Total: 88




{@ 1. (a) Verify that ¢V =y — 2* + C is an implicit solution of the differential equation:
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@ (b) Determine the region in which the differential equation:
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has a unique solution through the point (1, —2)).
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@5) 2. (a) Find the critical points of the differential equation:
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@ 6) ) Draw the portrait line of the differential equation (1) and then classify the critical
points determined in (a).




JSI the initial value problem




Q{j | 4. Solve the differential equation:
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@ 5. (a) Solve the differential equation:

(32® + 22%y* — 202%)dz + 2%y dy = 0.
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(b) Consider the differential equntinu
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(zycosx — 2ysinx)dx + 2z sinz dy = 0. (1)

(i) Determine whether the differential equation (1) is Exact or not.
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(11) In case that the differential equation (1) is not Exact, find an integrating factor
which makes equation (1) exact. (Do not solve the obtained equation)
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@ 6. (a) Find a suitable substitution that transforms the differential equation

Vi dy = (z — y**)dz,

into a linear differential equation. Find the new linear equation but do not solve

it. =

(b) Find a suitable substitution that transforms the differential equation
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into a separable differential equation. Find the new separable equation but do not

solve it.
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@J 7. A glass of water initially at 70° F is placed in a freezer. The freezer is kept at the constant
temperature 50° F. After one hour the temperature of the water in the glass is 60° F. Find
the exact time needed for the temperature of the water to reach 52° F after it is placed
in the freezer.
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HI \t/ 8. (a) Verify that y = ¢; €' sin 2t + ¢y e’ cos 2t is a two-parameter family of solutions of the
R differential equation:
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O% f 9. Consider the differential equation

y' — 4y + 4y =0, (1)

(a) Find the interval in which the two solutions
independent.
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(b) Form a general solution for the differential equation (1).
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