King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 201-19 Class Test 2 Fall 2010(010)

(1) Describe and sketch the surfaces in space defined by the following equations:

(15 pts)

- (i) z = -1
- (ii) $x^2 + z^2 = 3$
- (iii) $z = y^2$
- (iv) yz = 1
- (v) z = -y + 1

- (2) Let $\vec{a} = \langle \sqrt{2}, 1, 1 \rangle$ and $\vec{b} = \langle -\sqrt{2}, 4, -1 \rangle$ be two vectors in \mathbb{R}^3 . (10pts)
 - i) Find the scalar projection and vector projection of \vec{b} onto \vec{a} .
 - ii) Find the angle between the vectors \vec{a} and $\vec{a} + \vec{b}$.
 - iii) If $\vec{r} = \langle x, y, z \rangle$, show that the vector equation $(\vec{r} \vec{a}) \cdot (\vec{r} \vec{b}) = 0$ represents a sphere.

(3) (a) Find the angle that the vector $\mathbf{v} = -\sqrt{3}\mathbf{j} + \mathbf{k}$ makes with the positive y-axis. . (2pts)

(b) Find all unit vectors parallel to the xz-plane that are perpendicular to the vector $2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$. (5pts)

(c) If a vector has direction angles $\alpha = \pi/4$ and $\beta = \pi/3$, find the third direction angle γ . (3pts)

(4) (a) Let $\vec{a} = \vec{OP}$, where P is the point $(2, 2, \sqrt{2})$. Compute the vectors \vec{b} and \vec{c} . (3pts)

(b) Let \vec{a} , \vec{b} and \vec{c} be three vectors in the plane 3x - 5y + 6z = 7. Compute $(-\vec{a} + 4\vec{b} - 7\vec{c}).(-3i + 5j - 6k).$ (7pts) (5) Given the points A(1,0,1), B(2,3,0), C(-1,1,4), and D(0,3,2), find the volume of the parallelepiped with adjacent edges AB, AC, and AD. (10pts)

Dr. M. R. Alfuraidan