King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math 201-19 Class Test 1 Fall 2010(010)

ID#:_____ NAME:____

Serial#_____

(SHOW YOUR WORK)

(1) Set up, **but do not evaluate**, an integral that represents the area of the inner loop of the Limacon $r = 1 + 2\sin\theta$. (10pts)

(2) Determine the area that is inside both $r = 3+2\sin\theta$ and r = 2. (15pts)

(3) Sketch and identify the curve

(10 pts)

$$x = 3\cos(2t), y = 1 + \cos^2(2t)$$

by eliminating the parameter t, and label the direction of increasing t.

(4) Find all points on the curve $x = t^3 - 3t$, $y = 3t^2 - 9$, where the tangent is (i) horizontal, (ii) vertical. (8pts) (5) Find the tangent line(s) to the parametric curve given by $x = t^5 - 4t^3$, $y = t^2$ at (0, 4). (10pts)

(6) Determine the length of $r = \theta$, $0 \le \theta \le 1$.	
(Hint: $\int \sec^3 x dx = \sec x \tan x + \ln \sec x + \tan x + C$)	(10 pts)

(7) Determine the surface area of the solid obtained by rotating the parametric curve $x = \cos^3(\theta), \ y = \sin^3(\theta), \ 0 \le \theta \le \frac{\pi}{2}$ about the x-axis. (7pts)

7

(8) Sketch $r = 2\cos\frac{\theta}{2}, 0 \le \theta \le 2\pi$.

(10 pts)

(9) Determine the equation of the tangent line to (10pts)

•

 $r = 2 + 2\cos 2\theta$ at $\theta = \frac{\pi}{4}$.

(10) Find the Cartesian equation of the curve whose polar equation is given as: (10pts)

$$r = \sin^2 \frac{\theta}{2} + \tan \theta$$

•

Dr. M. R. Alfuraidan