1. An equation for the tangent line to the polar curve

$$r = 3\sin 3\theta$$

at
$$\theta = \frac{\pi}{6}$$
 is

(a)
$$y = 6 - \sqrt{3}x$$

(b)
$$y = 6 - \frac{\pi}{6}x$$

(c)
$$y = \frac{\pi}{6} - \sqrt{3}x$$

(d)
$$y = 2\sqrt{3}x + 6$$

(e)
$$y = 6 - 3x$$

2. The length of the curve represented by

$$x = 2 + 3t, y = \cosh 3t, \quad 0 \le t \le 1$$

- (a) $\sinh 3$
- (b) cosh 3
- (c) $(1 + \cosh 3)$
- (d) $(1 + \sinh 3)$
- (e) $\cosh 3 + \sinh 3$

- 3. The area of the region that lies inside both of the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$ is equal to
 - (a) $\frac{1}{2}(\pi 1)$
 - (b) $\frac{\pi}{2}$
 - (c) $2\pi + 1$
 - (d) $\pi + \frac{1}{2}$
 - (e) $\pi \frac{1}{2}$

- 4. Let $\vec{u} = \langle 1, -1, 0 \rangle$ and $\vec{v} = \langle 0, 2, -1 \rangle$. If θ is the angle between \vec{u} and \vec{v} , then $\tan \theta$ is equal to
 - (a) $-\frac{\sqrt{6}}{2}$
 - (b) $-\sqrt{6}$
 - (c) $\frac{\sqrt{3}}{\sqrt{2}}$
 - (d) $\frac{\sqrt{3}}{\sqrt{5}}$
 - (e) $-\frac{2}{\sqrt{6}}$

5. The equation $3x^2 - 2y^2 + 3z^2 + 30x - 8y - 24z + 131 = 0$ represents

- (a) A hyperboloid of two sheets
- (b) A cone
- (c) A hyperboloid of one sheet
- (d) A hyperbolic paraboloid
- (e) An elliptic paraboloid

6. The distance from the plane (x-1)+(y-2)+2(z-5)=0 to the plane x+y+2z=4 is equal to

- (a) $9/\sqrt{6}$
- (b) $4/\sqrt{6}$
- (c) $2/\sqrt{6}$
- (d) $13/\sqrt{6}$
- (e) 9

7. Given that $x = 2s^2 + 3t$, $y = 3s - 2t^2$, z = f(x, y), $f_x(-1, 1) = 7$, $f_y(-1, 1) = -3$. The value of $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at s = 1, t = -1 is

- (a) 28
- (b) 27
- (c) 4
- (d) 5
- (e) -1

8. The absolute minimum of f(x,y) = 6 + 3xy - 2x - 4y on the region D bounded by the parabola $y = x^2$ and the line y = 4 is equal to

- (a) -30
- (b) 0
- (c) -34
- (d) -36
- (e) 30

9. The equation of the tangent plane to the surface $z + 5 = xe^y \cos z$ at the point (5, 0, 0) is

(a)
$$x + 5y - z = 5$$

(b)
$$x + 5y + z = 5$$

(c)
$$x + y - 5z = 5$$

(d)
$$5x + y - z = 25$$

(e)
$$x + y - z = 5$$

10. If $f(x,y) = y^3 - 6xy + 8x^2$, then a local minimum of f occurs at

(a)
$$\left(\frac{9}{32}, \frac{3}{4}\right)$$

(b)
$$(0,0)$$

(c)
$$(9,3)$$

(d)
$$(32,4)$$

(e)
$$\left(\frac{9}{2}, \frac{4}{3}\right)$$

- 11. The maximum rate of change of $f(x,y) = xye^{-xy^2}$ at the point (1,1) is
 - (a) e^{-1}
 - (b) e^{-4}
 - (c) e
 - (d) $\frac{e^{-1}}{2}$
 - (e) 1

- 12. The maximum value of f(x,y) = x + 2y subject to the constraint $x^2 + y^2 = 1$ is equal to
 - (a) $\sqrt{5}$
 - (b) $\frac{1}{\sqrt{5}}$
 - (c) $\frac{2}{\sqrt{5}}$
 - (d) $2\sqrt{5}$
 - (e) $\frac{3}{\sqrt{5}}$

13. The rate of change of $f(x,y) = \sqrt{6x - 5y}$ at (5,1) in the direction of a vector at an angle of $-\pi/6$ from the positive x-axis is

(a)
$$\frac{1}{4} + \frac{3\sqrt{3}}{10}$$

(b)
$$\frac{1}{6} + \frac{\sqrt{3}}{10}$$

(c)
$$\frac{3\sqrt{3}}{10}$$

(d)
$$5 + \frac{\sqrt{3}}{10}$$

(e)
$$1 + \frac{\sqrt{5}}{10}$$

14. If the point $(4, 4\sqrt{3}, -7)$ is given in rectangular coordinates, then its cylindrical coordinates are given by

(a)
$$\left(-8, \frac{4\pi}{3}, -7\right)$$

(b)
$$\left(8, \frac{2\pi}{3}, -7\right)$$

(c)
$$\left(8, \frac{2\pi}{3}, 7\right)$$

(d)
$$\left(-8, \frac{\pi}{3}, -7\right)$$

(e)
$$\left(8, \frac{5\pi}{3}, 7\right)$$

15. Using four equal squares and their midpoints, the best estimate for the volume of the solid that lies above the square

$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

and below the elliptic paraboloid $f(x,y) = 68 - 2x^2 - 2y^2$ is

- (a) 768
- (b) 836
- (c) 778
- (d) 192
- (e) 762

- 16. The volume under the surface $z = x^5 + y^5$ and above the region bounded by $y = x^2$ and $x = y^2$ is equal to
 - (a) $\frac{3}{52}$
 - (b) $\frac{1}{37}$
 - (c) $\frac{1}{32}$
 - (d) $\frac{3}{32}$
 - (e) $\frac{1}{18}$

17. The double integral

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx \ dy$$

is equal to

- (a) $\frac{\pi}{8} \ln 5$
- (b) $\frac{\pi}{4} \ln 3$
- (c) $\frac{\pi}{3} \ln 5$
- (d) $\pi \ln 5$
- (e) $\sqrt{2}\pi$

18. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(x\sqrt{y}) dy \ dx.$$

- (a) $1 \sin 1$
- (b) sin 1
- (c) $1 \sqrt{\sin 1}$
- (d) $1 \cos 1$
- (e) cos 1

19. The volume of the solid Q lying inside both the sphere $x^2 + y^2 + z^2 = 2z$ and the cone $z^2 = x^2 + y^2$ is given in spherical coordinates by

(a)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(b)
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{1/2\cos\theta} \rho^2 \sin\phi d\rho d\phi d\theta$$

(c)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2\pi} \rho^2 \sin \phi d\rho d\phi d\theta$$

(d)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho \sin^2\phi d\rho d\phi d\theta$$

(e)
$$\int_0^{\pi} \int_0^{2\pi} \int_0^{2\sin\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

20. The volume of the solid above the xy-plane inside both the sphere $x^2 + y^2 + z^2 = 16$ and the cylinder $x^2 + y^2 - 4x = 0$ is equal to

(a)
$$\frac{64}{9}(3\pi - 4)$$

(b)
$$\frac{64\pi}{3}$$

(c)
$$\frac{\pi}{9} + 4$$

(d)
$$\frac{3\pi}{4} + \frac{64}{9}$$

(e)
$$\frac{64}{9}\pi$$

- 1. The absolute minimum of f(x,y) = 6 + 3xy 2x 4y on the region D bounded by the parabola $y = x^2$ and the line y = 4 is equal to
 - $(a) \quad 0$
 - (b) -30
 - (c) -34
 - (d) -36
 - (e) 30

- 2. The maximum rate of change of $f(x,y) = xye^{-xy^2}$ at the point (1,1) is
 - (a) e^{-4}
 - (b) $\frac{e^{-1}}{2}$
 - (c) e^{-1}
 - (d) e
 - (e) 1

- 3. The rate of change of $f(x,y) = \sqrt{6x 5y}$ at (5,1) in the direction of a vector at an angle of $-\pi/6$ from the positive x-axis is
 - (a) $\frac{1}{4} + \frac{3\sqrt{3}}{10}$
 - (b) $1 + \frac{\sqrt{5}}{10}$
 - (c) $\frac{3\sqrt{3}}{10}$
 - (d) $5 + \frac{\sqrt{3}}{10}$
 - (e) $\frac{1}{6} + \frac{\sqrt{3}}{10}$

- 4. The equation $3x^2 2y^2 + 3z^2 + 30x 8y 24z + 131 = 0$ represents
 - (a) A hyperbolic paraboloid
 - (b) An elliptic paraboloid
 - (c) A hyperboloid of two sheets
 - (d) A hyperboloid of one sheet
 - (e) A cone

- 5. The maximum value of f(x,y) = x + 2y subject to the constraint $x^2 + y^2 = 1$ is equal to
 - (a) $\sqrt{5}$
 - (b) $2\sqrt{5}$
 - (c) $\frac{1}{\sqrt{5}}$
 - (d) $\frac{3}{\sqrt{5}}$
 - (e) $\frac{2}{\sqrt{5}}$

- 6. The volume of the solid above the xy-plane inside both the sphere $x^2 + y^2 + z^2 = 16$ and the cylinder $x^2 + y^2 4x = 0$ is equal to
 - (a) $\frac{64}{9}(3\pi 4)$
 - (b) $\frac{3\pi}{4} + \frac{64}{9}$
 - (c) $\frac{\pi}{9} + 4$
 - (d) $\frac{64}{9}\pi$
 - (e) $\frac{64\pi}{3}$

- 7. Let $\vec{u} = \langle 1, -1, 0 \rangle$ and $\vec{v} = \langle 0, 2, -1 \rangle$. If θ is the angle between \vec{u} and \vec{v} , then $\tan \theta$ is equal to
 - (a) $\frac{\sqrt{3}}{\sqrt{2}}$
 - (b) $\frac{\sqrt{3}}{\sqrt{5}}$
 - (c) $-\frac{2}{\sqrt{6}}$
 - $(d) -\frac{\sqrt{6}}{2}$
 - (e) $-\sqrt{6}$

- 8. The distance from the plane (x-1)+(y-2)+2(z-5)=0 to the plane x+y+2z=4 is equal to
 - (a) $13/\sqrt{6}$
 - (b) $9/\sqrt{6}$
 - (c) $4/\sqrt{6}$
 - (d) $2/\sqrt{6}$
 - (e) 9

- 9. The volume under the surface $z = x^5 + y^5$ and above the region bounded by $y = x^2$ and $x = y^2$ is equal to
 - (a) $\frac{3}{52}$
 - (b) $\frac{1}{32}$
 - (c) $\frac{1}{18}$
 - (d) $\frac{3}{32}$
 - (e) $\frac{1}{37}$

10. The double integral

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx \ dy$$

- (a) $\sqrt{2}\pi$
- (b) $\pi \ln 5$
- (c) $\frac{\pi}{3} \ln 5$
- (d) $\frac{\pi}{4} \ln 3$
- (e) $\frac{\pi}{8} \ln 5$

11. The volume of the solid Q lying inside both the sphere $x^2 + y^2 + z^2 = 2z$ and the cone $z^2 = x^2 + y^2$ is given in spherical coordinates by

(a)
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1/2\cos\theta} \rho^{2} \sin\phi d\rho d\phi d\theta$$

(b)
$$\int_0^{\pi} \int_0^{2\pi} \int_0^{2\sin\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho \sin^2\phi d\rho d\phi d\theta$$

(d)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2\pi} \rho^2 \sin \phi d\rho d\phi d\theta$$

(e)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

12. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(x\sqrt{y}) dy \ dx.$$

- (a) sin 1
- (b) $1 \sin 1$
- (c) $1 \cos 1$
- (d) $1 \sqrt{\sin 1}$
- (e) $\cos 1$

- 13. Given that $x = 2s^2 + 3t$, $y = 3s 2t^2$, z = f(x, y), $f_x(-1, 1) = 7$, $f_y(-1, 1) = -3$. The value of $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at s = 1, t = -1 is
 - (a) 28
 - (b) 5
 - (c) 4
 - (d) -1
 - (e) 27

- 14. The area of the region that lies inside both of the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$ is equal to
 - (a) $\pi + \frac{1}{2}$
 - (b) $\frac{\pi}{2}$
 - (c) $\frac{1}{2}(\pi 1)$
 - (d) $\pi \frac{1}{2}$
 - (e) $2\pi + 1$

15. An equation for the tangent line to the polar curve

$$r = 3\sin 3\theta$$

at
$$\theta = \frac{\pi}{6}$$
 is

(a)
$$y = 6 - \frac{\pi}{6}x$$

(b)
$$y = 6 - 3x$$

$$(c) \quad y = \frac{\pi}{6} - \sqrt{3} x$$

(d)
$$y = 2\sqrt{3}x + 6$$

(e)
$$y = 6 - \sqrt{3}x$$

16. Using four equal squares and their midpoints, the best estimate for the volume of the solid that lies above the square

$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

and below the elliptic paraboloid $f(x,y) = 68 - 2x^2 - 2y^2$ is

- (a) 768
- (b) 778
- (c) 762
- (d) 836
- (e) 192

17. If the point $(4, 4\sqrt{3}, -7)$ is given in rectangular coordinates, then its cylindrical coordinates are given by

(a)
$$\left(-8, \frac{4\pi}{3}, -7\right)$$

(b)
$$\left(-8, \frac{\pi}{3}, -7\right)$$

(c)
$$\left(8, \frac{5\pi}{3}, 7\right)$$

(d)
$$\left(8, \frac{2\pi}{3}, -7\right)$$

(e)
$$\left(8, \frac{2\pi}{3}, 7\right)$$

18. The equation of the tangent plane to the surface $z + 5 = xe^y \cos z$ at the point (5, 0, 0) is

(a)
$$x + 5y + z = 5$$

(b)
$$5x + y - z = 25$$

(c)
$$x + y - 5z = 5$$

$$(d) \quad x + 5y - z = 5$$

(e)
$$x + y - z = 5$$

19. The length of the curve represented by

$$x = 2 + 3t, y = \cosh 3t, \quad 0 \le t \le 1$$

- (a) $(1 + \sinh 3)$
- (b) $\cosh 3 + \sinh 3$
- (c) $(1 + \cosh 3)$
- $(d) \cosh 3$
- (e) $\sinh 3$

- 20. If $f(x,y) = y^3 6xy + 8x^2$, then a local minimum of f occurs at
 - (a) (9,3)
 - (b) (32,4)
 - (c) $\left(\frac{9}{2}, \frac{4}{3}\right)$
 - $(d) \quad \left(\frac{9}{32}, \frac{3}{4}\right)$
 - (e) (0,0)

Name		
ID	 Sec	

1	a	b	С	d	е	f
2	a	b	С	d	е	f
3	a	b	С	d	е	f
4	a	b	С	d	е	f
5	a	b	С	d	е	f
6	a	b	c	d	е	f
7	a	b	С	d	е	f
8	a	b	c	d	е	f
9	a	b	С	d	е	f
10	a	b	c	d	е	f
11	a	b	С	d	е	f
12	a	b	С	d	е	f
13	a	b	c	d	е	f
14	a	b	c	d	е	f
15	a	b	С	d	е	f
16	a	b	c	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	c	d	е	f
20	a	b	С	d	е	f
21	a	b	c	d	е	f
22	a	b	С	d	е	f
23	a	b	С	d	е	f
24	a	b	С	d	е	f
25	a	b	С	d	е	f
26	a	b	$^{\mathrm{c}}$	d	e	f
27	a	b	c	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	С	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	е	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	c	d	е	f
37	a	b	С	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	С	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	С	d	е	f
47	a	b	С	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	С	d	е	f
57	a	b	c	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	С	d	е	f
61	a	b	С	d	е	f
62	a	b	С	d	е	f
63	a	b	С	d	е	f
64	a	b	\mathbf{c}	d	е	f
65	a	b	$^{\mathrm{c}}$	d	е	f
66	a	b	\mathbf{c}	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	$^{\mathrm{c}}$	d	е	f
70	a	b	С	d	е	f

1. The volume of the solid Q lying inside both the sphere $x^2 + y^2 + z^2 = 2z$ and the cone $z^2 = x^2 + y^2$ is given in spherical coordinates by

(a)
$$\int_0^{\pi} \int_0^{2\pi} \int_0^{2\sin\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(b)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2\pi} \rho^2 \sin \phi d\rho d\phi d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{1/2\cos\theta} \rho^2 \sin\phi d\rho d\phi d\theta$$

(d)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(e)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho \sin^2\phi d\rho d\phi d\theta$$

2. If the point $(4, 4\sqrt{3}, -7)$ is given in rectangular coordinates, then its cylindrical coordinates are given by

(a)
$$\left(8, \frac{5\pi}{3}, 7\right)$$

(b)
$$\left(8, \frac{2\pi}{3}, -7\right)$$

(c)
$$\left(-8, \frac{\pi}{3}, -7\right)$$

(d)
$$\left(8, \frac{2\pi}{3}, 7\right)$$

(e)
$$\left(-8, \frac{4\pi}{3}, -7\right)$$

- 3. The volume under the surface $z = x^5 + y^5$ and above the region bounded by $y = x^2$ and $x = y^2$ is equal to
 - (a) $\frac{3}{52}$
 - (b) $\frac{1}{32}$
 - (c) $\frac{1}{37}$
 - (d) $\frac{3}{32}$
 - (e) $\frac{1}{18}$

- 4. If $f(x,y) = y^3 6xy + 8x^2$, then a local minimum of f occurs at
 - (a) (9,3)
 - (b) (32,4)
 - (c) (0,0)
 - (d) $\left(\frac{9}{32}, \frac{3}{4}\right)$
 - (e) $\left(\frac{9}{2}, \frac{4}{3}\right)$

5. Using four equal squares and their midpoints, the best estimate for the volume of the solid that lies above the square

$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

and below the elliptic paraboloid $f(x,y) = 68 - 2x^2 - 2y^2$ is

- (a) 836
- (b) 768
- (c) 778
- (d) 762
- (e) 192

- 6. The maximum rate of change of $f(x,y) = xye^{-xy^2}$ at the point (1,1) is
 - (a) e
 - (b) e^{-1}
 - (c) 1
 - (d) e^{-4}
 - (e) $\frac{e^{-1}}{2}$

- 7. The rate of change of $f(x,y) = \sqrt{6x 5y}$ at (5,1) in the direction of a vector at an angle of $-\pi/6$ from the positive x-axis is
 - (a) $\frac{3\sqrt{3}}{10}$
 - (b) $\frac{1}{4} + \frac{3\sqrt{3}}{10}$
 - (c) $\frac{1}{6} + \frac{\sqrt{3}}{10}$
 - (d) $5 + \frac{\sqrt{3}}{10}$
 - (e) $1 + \frac{\sqrt{5}}{10}$

- 8. Let $\vec{u} = \langle 1, -1, 0 \rangle$ and $\vec{v} = \langle 0, 2, -1 \rangle$. If θ is the angle between \vec{u} and \vec{v} , then $\tan \theta$ is equal to
 - (a) $-\sqrt{6}$
 - (b) $\frac{\sqrt{3}}{\sqrt{2}}$
 - (c) $-\frac{\sqrt{6}}{2}$
 - $(d) -\frac{2}{\sqrt{6}}$
 - (e) $\frac{\sqrt{3}}{\sqrt{5}}$

- 9. The absolute minimum of f(x,y) = 6 + 3xy 2x 4y on the region D bounded by the parabola $y = x^2$ and the line y = 4 is equal to
 - (a) -30
 - (b) -34
 - (c) 0
 - (d) 30
 - (e) -36

- 10. The distance from the plane (x-1)+(y-2)+2(z-5)=0 to the plane x+y+2z=4 is equal to
 - (a) $2/\sqrt{6}$
 - (b) $13/\sqrt{6}$
 - (c) 9
 - (d) $4/\sqrt{6}$
 - (e) $9/\sqrt{6}$

11. The double integral

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx dy$$

- (a) $\frac{\pi}{3} \ln 5$
- (b) $\pi \ln 5$
- (c) $\frac{\pi}{8} \ln 5$
- (d) $\sqrt{2}\pi$
- (e) $\frac{\pi}{4} \ln 3$

- 12. The volume of the solid above the xy-plane inside both the sphere $x^2 + y^2 + z^2 = 16$ and the cylinder $x^2 + y^2 4x = 0$ is equal to
 - (a) $\frac{64}{9}(3\pi 4)$
 - (b) $\frac{\pi}{9} + 4$
 - (c) $\frac{64}{9}\pi$
 - (d) $\frac{3\pi}{4} + \frac{64}{9}$
 - (e) $\frac{64\pi}{3}$

13. An equation for the tangent line to the polar curve

$$r=3\sin3\theta$$

at
$$\theta = \frac{\pi}{6}$$
 is

(a)
$$y = 6 - \sqrt{3}x$$

(b)
$$y = 6 - \frac{\pi}{6}x$$

(c)
$$y = \frac{\pi}{6} - \sqrt{3}x$$

(d)
$$y = 2\sqrt{3}x + 6$$

(e)
$$y = 6 - 3x$$

14. The length of the curve represented by

$$x = 2 + 3t, y = \cosh 3t, \quad 0 \le t \le 1$$

- (a) $\cosh 3$
- (b) $(1 + \sinh 3)$
- (c) $(1 + \cosh 3)$
- $(d) \sinh 3$
- (e) $\cosh 3 + \sinh 3$

- 15. The area of the region that lies inside both of the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$ is equal to
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{1}{2}(\pi 1)$
 - (c) $2\pi + 1$
 - (d) $\pi + \frac{1}{2}$
 - (e) $\pi \frac{1}{2}$

- 16. The equation $3x^2 2y^2 + 3z^2 + 30x 8y 24z + 131 = 0$ represents
 - (a) A hyperboloid of one sheet
 - (b) A hyperboloid of two sheets
 - (c) An elliptic paraboloid
 - (d) A cone
 - (e) A hyperbolic paraboloid

- 17. Given that $x = 2s^2 + 3t$, $y = 3s 2t^2$, z = f(x, y), $f_x(-1, 1) = 7$, $f_y(-1, 1) = -3$. The value of $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at s = 1, t = -1 is
 - (a) 28
 - (b) 5
 - (c) 4
 - (d) 27
 - (e) -1

- 18. The maximum value of f(x,y) = x + 2y subject to the constraint $x^2 + y^2 = 1$ is equal to
 - (a) $2\sqrt{5}$
 - (b) $\sqrt{5}$
 - (c) $\frac{3}{\sqrt{5}}$
 - (d) $\frac{1}{\sqrt{5}}$
 - (e) $\frac{2}{\sqrt{5}}$

19. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(x\sqrt{y}) dy \ dx.$$

- (a) $1 \cos 1$
- (b) sin 1
- (c) $1 \sqrt{\sin 1}$
- (d) $1 \sin 1$
- (e) cos 1

20. The equation of the tangent plane to the surface $z + 5 = xe^y \cos z$ at the point (5, 0, 0) is

(a)
$$x + 5y + z = 5$$

(b)
$$x + y - z = 5$$

(c)
$$x + 5y - z = 5$$

(d)
$$5x + y - z = 25$$

(e)
$$x + y - 5z = 5$$

Name		
ID	 Sec	

1	a	b	c	d	e	f
$\frac{1}{2}$	a	b	$\frac{c}{c}$	d	e	f
3	a	b	$\frac{c}{c}$	d	e	f
4	a	b	c	d	e	f
5	a	b	$\frac{c}{c}$	d	e	f
6	a	b	$\frac{c}{c}$	d	e	f
7	a	b	$\frac{c}{c}$	$\frac{\mathrm{d}}{\mathrm{d}}$	e	f
8	a	b	c	d	e	f
9	a	b	c	d	e	f
10	a	b	c	d	e	f
11	a	b	c	d	e	f
12	a	b	С	d	е	f
13	a	b	c	d	e	f
14	a	b	С	d	е	f
15	a	b	c	d	е	f
16	a	b	c	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	С	d	е	f
20	a	b	С	d	е	f
21	a	b	c	d	е	f
22	a	b	С	d	е	f
23	a	b	С	d	е	f
24	a	b	С	d	е	f
25	a	b	С	d	е	f
26	a	b	\mathbf{c}	d	e	f
27	a	b	\mathbf{c}	d	e	f
28	a	b	c	d	e	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	\mathbf{c}	d	e	f
32	a	b	c	d	е	f
33	a	b	\mathbf{c}	d	e	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	$^{\mathrm{c}}$	d	е	f
37	a	b	С	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	c	d	е	f
44	a	b	С	d	е	f
45	a	b	c	d	е	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	c	d	е	f
52	a	b	С	d	е	f
53	a	b	c	d	е	f
54	a	b	c	d	е	f
55	a	b	С	d	е	f
56	a	b	С	d	е	f
57	a	b	С	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	\mathbf{c}	d	е	f
61	a	b	\mathbf{c}	d	е	f
62	a	b	\mathbf{c}	d	e	f
63	a	b	\mathbf{c}	d	е	f
64	a	b	\mathbf{c}	d	е	f
65	a	b	\mathbf{c}	d	е	f
66	a	b	$^{\mathrm{c}}$	d	е	f
67	a	b	\mathbf{c}	d	е	f
68	a	b	\mathbf{c}	d	е	f
69	a	b	\mathbf{c}	d	е	f
70	a	b	$^{\mathrm{c}}$	d	е	f

1. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(x\sqrt{y}) dy \ dx.$$

- (a) $1 \cos 1$
- (b) cos 1
- (c) sin 1
- (d) $1 \sqrt{\sin 1}$
- (e) $1 \sin 1$

- 2. The area of the region that lies inside both of the curves $r=2\sin\theta$ and $r=\sin\theta+\cos\theta$ is equal to
 - (a) $\frac{\pi}{2}$
 - (b) $\pi + \frac{1}{2}$
 - (c) $\frac{1}{2}(\pi 1)$
 - (d) $\pi \frac{1}{2}$
 - (e) $2\pi + 1$

- 3. The volume under the surface $z = x^5 + y^5$ and above the region bounded by $y = x^2$ and $x = y^2$ is equal to
 - (a) $\frac{1}{32}$
 - (b) $\frac{1}{37}$
 - (c) $\frac{3}{52}$
 - (d) $\frac{1}{18}$
 - (e) $\frac{3}{32}$

- 4. If $f(x,y) = y^3 6xy + 8x^2$, then a local minimum of f occurs at
 - (a) $\left(\frac{9}{2}, \frac{4}{3}\right)$
 - (b) (32,4)
 - (c) (9,3)
 - (d) (0,0)
 - (e) $\left(\frac{9}{32}, \frac{3}{4}\right)$

- 5. Let $\vec{u} = \langle 1, -1, 0 \rangle$ and $\vec{v} = \langle 0, 2, -1 \rangle$. If θ is the angle between \vec{u} and \vec{v} , then $\tan \theta$ is equal to
 - (a) $\frac{\sqrt{3}}{\sqrt{2}}$
 - (b) $-\frac{2}{\sqrt{6}}$
 - (c) $\frac{\sqrt{3}}{\sqrt{5}}$
 - $(d) -\frac{\sqrt{6}}{2}$
 - (e) $-\sqrt{6}$

6. An equation for the tangent line to the polar curve

$$r = 3\sin 3\theta$$

at
$$\theta = \frac{\pi}{6}$$
 is

- (a) $y = 6 \frac{\pi}{6}x$
- (b) y = 6 3x
- $(c) \quad y = \frac{\pi}{6} \sqrt{3} x$
- (d) $y = 6 \sqrt{3}x$
- (e) $y = 2\sqrt{3}x + 6$

- 7. The equation $3x^2 2y^2 + 3z^2 + 30x 8y 24z + 131 = 0$ represents
 - (a) A hyperboloid of two sheets
 - (b) A hyperboloid of one sheet
 - (c) A cone
 - (d) An elliptic paraboloid
 - (e) A hyperbolic paraboloid

8. The length of the curve represented by

$$x = 2 + 3t, y = \cosh 3t, \quad 0 \le t \le 1$$

- (a) $\sinh 3$
- (b) $(1 + \cosh 3)$
- (c) $\cosh 3 + \sinh 3$
- (d) $(1 + \sinh 3)$
- (e) $\cosh 3$

- 9. The rate of change of $f(x,y) = \sqrt{6x 5y}$ at (5,1) in the direction of a vector at an angle of $-\pi/6$ from the positive x-axis is
 - (a) $5 + \frac{\sqrt{3}}{10}$
 - (b) $\frac{1}{6} + \frac{\sqrt{3}}{10}$
 - (c) $\frac{1}{4} + \frac{3\sqrt{3}}{10}$
 - (d) $\frac{3\sqrt{3}}{10}$
 - (e) $1 + \frac{\sqrt{5}}{10}$

- 10. The maximum value of f(x,y) = x + 2y subject to the constraint $x^2 + y^2 = 1$ is equal to
 - (a) $\frac{3}{\sqrt{5}}$
 - (b) $2\sqrt{5}$
 - (c) $\frac{1}{\sqrt{5}}$
 - (d) $\sqrt{5}$
 - (e) $\frac{2}{\sqrt{5}}$

11. The double integral

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx \ dy$$

is equal to

- (a) $\frac{\pi}{3} \ln 5$
- (b) $\frac{\pi}{8} \ln 5$
- (c) $\pi \ln 5$
- (d) $\frac{\pi}{4} \ln 3$
- (e) $\sqrt{2}\pi$

12. The volume of the solid above the xy-plane inside both the sphere $x^2+y^2+z^2=16$ and the cylinder $x^2+y^2-4x=0$ is equal to

(a)
$$\frac{64}{9}(3\pi - 4)$$

(b)
$$\frac{\pi}{9} + 4$$

(c)
$$\frac{64\pi}{3}$$

(d)
$$\frac{64}{9}\pi$$

(e)
$$\frac{3\pi}{4} + \frac{64}{9}$$

13. Using four equal squares and their midpoints, the best estimate for the volume of the solid that lies above the square

$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

and below the elliptic paraboloid $f(x, y) = 68 - 2x^2 - 2y^2$ is

- (a) 778
- (b) 768
- (c) 192
- (d) 836
- (e) 762

- 14. The maximum rate of change of $f(x,y) = xye^{-xy^2}$ at the point (1,1) is
 - (a) $\frac{e^{-1}}{2}$
 - (b) e^{-4}
 - (c) 1
 - (d) e
 - (e) e^{-1}

- 15. The distance from the plane (x-1)+(y-2)+2(z-5)=0 to the plane x+y+2z=4 is equal to
 - (a) $13/\sqrt{6}$
 - (b) $2/\sqrt{6}$
 - (c) $4/\sqrt{6}$
 - (d) 9
 - (e) $9/\sqrt{6}$

- 16. Given that $x = 2s^2 + 3t$, $y = 3s 2t^2$, z = f(x, y), $f_x(-1, 1) = 7$, $f_y(-1, 1) = -3$. The value of $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at s = 1, t = -1 is
 - (a) 4
 - (b) 27
 - (c) -1
 - (d) 28
 - (e) 5

- 17. The absolute minimum of f(x,y) = 6 + 3xy 2x 4y on the region D bounded by the parabola $y = x^2$ and the line y = 4 is equal to
 - (a) -34
 - (b) -30
 - (c) 30
 - (d) -36
 - (e) 0

- 18. The equation of the tangent plane to the surface $z + 5 = xe^y \cos z$ at the point (5, 0, 0) is
 - (a) 5x + y z = 25
 - (b) x + y 5z = 5
 - (c) x + y z = 5
 - $(d) \quad x + 5y z = 5$
 - (e) x + 5y + z = 5

19. If the point $(4, 4\sqrt{3}, -7)$ is given in rectangular coordinates, then its cylindrical coordinates are given by

(a)
$$\left(-8, \frac{4\pi}{3}, -7\right)$$

(b)
$$\left(8, \frac{2\pi}{3}, 7\right)$$

(c)
$$\left(-8, \frac{\pi}{3}, -7\right)$$

(d)
$$\left(8, \frac{2\pi}{3}, -7\right)$$

(e)
$$\left(8, \frac{5\pi}{3}, 7\right)$$

20. The volume of the solid Q lying inside both the sphere $x^2 + y^2 + z^2 = 2z$ and the cone $z^2 = x^2 + y^2$ is given in spherical coordinates by

(a)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2\pi} \rho^2 \sin \phi d\rho d\phi d\theta$$

(b)
$$\int_0^{\pi} \int_0^{2\pi} \int_0^{2\sin\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{1/2\cos\theta} \rho^2 \sin\phi d\rho d\phi d\theta$$

(d)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(e)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho \sin^2\phi d\rho d\phi d\theta$$

1	a	b	c	d	е	f
2	a	b	С	d	е	f
3	a	b	С	d	е	f
4	a	b	С	d	е	f
5	a	b	С	d	е	f
6	a	b	С	d	е	f
7	a	b	С	d	е	f
8	a	b	c	d	е	f
9	a	b	С	d	е	f
10	a	b	c	d	е	f
11	a	b	С	d	е	f
12	a	b	c	d	е	f
13	a	b	С	d	е	f
14	a	b	c	d	е	f
15	a	b	С	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	С	d	е	f
20	a	b	С	d	е	f
21	a	b	С	d	е	f
22	a	b	С	d	е	f
23	a	b	С	d	е	f
24	a	b	c	d	е	f
25	a	b	С	d	е	f
26	a	b	С	d	е	f
27	a	b	С	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	С	d	е	f
33	a	b	С	d	е	f
34	a	b	С	d	е	f
35	a	b	С	d	е	f

a	-				
	b	\mathbf{c}	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С		е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С		е	f
a	b	С		е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	c	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	С	d	е	f
a	b	c	d	е	f
a	b	С	d	е	f
a	b	c	d	е	f
a	b	С		е	f
a	b	С		е	f
a	b	c		е	f
a	b	$^{\mathrm{c}}$	d	е	f
a	b	С	d	е	f
a	b	С		е	f
a	b	c		е	f
a		С		е	f
a		С		е	f
a	b	c	d	е	f
	b	С	d	е	f
a					
a	b	c	d	е	f
		c	d d	e e	f f
	a a a a a a a a a a a a a a a a a a a	a b a	a b c a b c	a b c d a b	a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c

- 1. The rate of change of $f(x,y) = \sqrt{6x 5y}$ at (5,1) in the direction of a vector at an angle of $-\pi/6$ from the positive x-axis is
 - (a) $\frac{1}{6} + \frac{\sqrt{3}}{10}$
 - (b) $\frac{3\sqrt{3}}{10}$
 - (c) $5 + \frac{\sqrt{3}}{10}$
 - (d) $\frac{1}{4} + \frac{3\sqrt{3}}{10}$
 - (e) $1 + \frac{\sqrt{5}}{10}$

- 2. The distance from the plane (x-1)+(y-2)+2(z-5)=0 to the plane x+y+2z=4 is equal to
 - (a) $13/\sqrt{6}$
 - (b) $4/\sqrt{6}$
 - (c) 9
 - (d) $9/\sqrt{6}$
 - (e) $2/\sqrt{6}$

- 3. The area of the region that lies inside both of the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$ is equal to
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{1}{2}(\pi 1)$
 - (c) $2\pi + 1$
 - (d) $\pi \frac{1}{2}$
 - (e) $\pi + \frac{1}{2}$

- 4. The maximum rate of change of $f(x,y) = xye^{-xy^2}$ at the point (1,1) is
 - (a) e^{-4}
 - (b) $\frac{e^{-1}}{2}$
 - (c) 1
 - (d) e^{-1}
 - (e) e

- 5. The maximum value of f(x,y) = x + 2y subject to the constraint $x^2 + y^2 = 1$ is equal to
 - (a) $\sqrt{5}$
 - (b) $2\sqrt{5}$
 - (c) $\frac{1}{\sqrt{5}}$
 - (d) $\frac{2}{\sqrt{5}}$
 - (e) $\frac{3}{\sqrt{5}}$

- 6. The equation $3x^2 2y^2 + 3z^2 + 30x 8y 24z + 131 = 0$ represents
 - (a) A hyperboloid of one sheet
 - (b) An elliptic paraboloid
 - (c) A hyperboloid of two sheets
 - (d) A cone
 - (e) A hyperbolic paraboloid

7. An equation for the tangent line to the polar curve

$$r = 3\sin 3\theta$$

at
$$\theta = \frac{\pi}{6}$$
 is

(a)
$$y = \frac{\pi}{6} - \sqrt{3}x$$

(b)
$$y = 6 - 3x$$

(c)
$$y = 6 - \frac{\pi}{6}x$$

(d)
$$y = 2\sqrt{3}x + 6$$

(e)
$$y = 6 - \sqrt{3}x$$

8. The volume under the surface $z = x^5 + y^5$ and above the region bounded by $y = x^2$ and $x = y^2$ is equal to

(a)
$$\frac{3}{52}$$

(b)
$$\frac{1}{18}$$

(c)
$$\frac{3}{32}$$

(d)
$$\frac{1}{37}$$

(e)
$$\frac{1}{32}$$

- 9. The absolute minimum of f(x,y) = 6 + 3xy 2x 4y on the region D bounded by the parabola $y = x^2$ and the line y = 4 is equal to
 - (a) -36
 - (b) -30
 - (c) 30
 - (d) -34
 - (e) 0

- 10. The equation of the tangent plane to the surface $z + 5 = xe^y \cos z$ at the point (5, 0, 0) is
 - (a) x + 5y + z = 5
 - (b) 5x + y z = 25
 - (c) x + 5y z = 5
 - (d) x + y 5z = 5
 - (e) x + y z = 5

11. The volume of the solid above the xy-plane inside both the sphere $x^2 + y^2 + z^2 = 16$ and the cylinder $x^2 + y^2 - 4x = 0$ is equal to

(a)
$$\frac{64}{9}(3\pi - 4)$$

(b)
$$\frac{64}{9}\pi$$

(c)
$$\frac{3\pi}{4} + \frac{64}{9}$$

(d)
$$\frac{64\pi}{3}$$

(e)
$$\frac{\pi}{9} + 4$$

12. The volume of the solid Q lying inside both the sphere $x^2 + y^2 + z^2 = 2z$ and the cone $z^2 = x^2 + y^2$ is given in spherical coordinates by

(a)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(b)
$$\int_0^{\pi} \int_0^{2\pi} \int_0^{2\sin\phi} \rho^2 \sin\phi d\rho d\phi d\theta$$

(c)
$$\int_0^{2\pi} \int_0^{\pi/2} \int_0^{1/2\cos\theta} \rho^2 \sin\phi d\rho d\phi d\theta$$

(d)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^{2\pi} \rho^2 \sin \phi d\rho d\phi d\theta$$

(e)
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\cos\phi} \rho \sin^2\phi d\rho d\phi d\theta$$

13. The double integral

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx dy$$

is equal to

- (a) $\frac{\pi}{4} \ln 3$
- (b) $\sqrt{2}\pi$
- (c) $\pi \ln 5$
- (d) $\frac{\pi}{3} \ln 5$
- (e) $\frac{\pi}{8} \ln 5$

14. If the point $(4, 4\sqrt{3}, -7)$ is given in rectangular coordinates, then its cylindrical coordinates are given by

(a)
$$\left(8, \frac{2\pi}{3}, 7\right)$$

(b)
$$\left(-8, \frac{\pi}{3}, -7\right)$$

(c)
$$\left(-8, \frac{4\pi}{3}, -7\right)$$

(d)
$$\left(8, \frac{5\pi}{3}, 7\right)$$

(e)
$$\left(8, \frac{2\pi}{3}, -7\right)$$

15. Using four equal squares and their midpoints, the best estimate for the volume of the solid that lies above the square

$$R = \{(x, y) | 0 \le x \le 4, 0 \le y \le 4\}$$

and below the elliptic paraboloid $f(x, y) = 68 - 2x^2 - 2y^2$ is

- (a) 836
- (b) 778
- (c) 768
- (d) 762
- (e) 192

16. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 \sqrt{y} \sin(x\sqrt{y}) dy \ dx.$$

- (a) $\cos 1$
- (b) $1 \sqrt{\sin 1}$
- (c) sin 1
- (d) $1 \cos 1$
- (e) $1 \sin 1$

17. If $f(x,y) = y^3 - 6xy + 8x^2$, then a local minimum of f occurs at

- (a) (0,0)
- (b) (32,4)
- (c) (9,3)
- (d) $\left(\frac{9}{32}, \frac{3}{4}\right)$
- (e) $\left(\frac{9}{2}, \frac{4}{3}\right)$

18. Given that $x = 2s^2 + 3t$, $y = 3s - 2t^2$, z = f(x, y), $f_x(-1, 1) = 7$, $f_y(-1, 1) = -3$. The value of $\frac{\partial z}{\partial s} + \frac{\partial z}{\partial t}$ at s = 1, t = -1 is

- (a) 5
- (b) 28
- (c) 4
- (d) -1
- (e) 27

- 19. Let $\vec{u} = \langle 1, -1, 0 \rangle$ and $\vec{v} = \langle 0, 2, -1 \rangle$. If θ is the angle between \vec{u} and \vec{v} , then $\tan \theta$ is equal to
 - (a) $\frac{\sqrt{3}}{\sqrt{2}}$
 - (b) $-\frac{2}{\sqrt{6}}$
 - (c) $-\frac{\sqrt{6}}{2}$
 - (d) $-\sqrt{6}$
 - (e) $\frac{\sqrt{3}}{\sqrt{5}}$

20. The length of the curve represented by

$$x = 2 + 3t, y = \cosh 3t, \quad 0 \le t \le 1$$

is equal to

- (a) $\cosh 3$
- (b) $\sinh 3$
- (c) $\cosh 3 + \sinh 3$
- (d) $(1 + \cosh 3)$
- (e) $(1 + \sinh 3)$

Name		
ID	 Sec	

1	a	b	С	d	е	f
2	a	b	c	d	e	f
3	a	b	С	d	е	f
4	a	b	С	d	e	f
5	a	b	С	d	е	f
6	a	b	С	d	е	f
7	a	b	c	d	е	f
8	a	b	С	d	е	f
9	a	b	С	d	е	f
10	a	b	c	d	е	f
11	a	b	С	d	е	f
12	a	b	С	d	е	f
13	a	b	С	d	е	f
14	a	b	С	d	е	f
15	a	b	С	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	С	d	е	f
20	a	b	c	d	е	f
21	a	b	С	d	е	f
22	a	b	c	d	е	f
23	a	b	$^{\mathrm{c}}$	d	е	f
24	a	b	С	d	е	f
25	a	b	\mathbf{c}	d	e	f
26	a	b	\mathbf{c}	d	e	f
27	a	b	\mathbf{c}	d	e	f
28	a	b	c	d	e	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	\mathbf{c}	d	e	f
32	a	b	c	d	е	f
33	a	b	\mathbf{c}	d	e	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	c	d	е	f
37	a	b	c	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	c	d	е	f
42	a	b	c	d	е	f
43	a	b	c	d	е	f
44	a	b	С	d	е	f
45	a	b	c	d	е	f
46	a	b	c	d	е	f
47	a	b	c	d	е	f
48	a	b	c	d	е	f
49	a	b	c	d	е	f
50	a	b	c	d	е	f
51	a	b	c	d	е	f
52	a	b	c	d	е	f
53	a	b	С	d	е	f
54	a	b	c	d	е	f
55	a	b	С	d	е	f
56	a	b	С	d	е	f
57	a	b	С	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	С	d	е	f
61	a	b	С	d	е	f
62	a	b	С	d	е	f
63	a	b	С	d	е	f
64	a	b	С	d	е	f
65	a	b	С	d	е	f
66	a	b	\mathbf{c}	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	\mathbf{c}	d	е	f
70	a	b	c	d	е	f

Q	MM	V1	V2	V3	V4
1	a	b	d	е	d
2	a	С	е	С	d
3	a	a	a	С	b
4	a	c	d	е	d
5	a	a	b	d	a
6	a	a	b	d	c
7	a	d	b	a	e
8	a	b	c	a	a
9	a	a	a	С	b
10	a	e	e	d	c
11	a	е	С	b	a
12	a	b	a	a	a
13	a	a	a	b	е
14	a	С	d	е	c
15	a	e	b	е	c
16	a	a	b	d	е
17	a	a	a	b	d
18	a	d	b	d	b
19	a	е	d	a	c
20	a	d	С	d	b

Answer Counts

V	a	b	c	d	e
1	3	1	2	9	5
2	6	3	5	5	1
3	3	4	6	3	4
4	4	1	3	5	7