King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 101
Final Exam
Semester 101
Sunday, January 23, 2011
Net Time Allowed: 180 minutes

MASTER VERSION

1. The graph of
$$y = \frac{x(x-1)^2(x+1)}{x(x+2)(x-1)}$$
 has

- (a) one vertical, and one slant asymptotes, and two holes
- (b) three vertical, and one slant asymptotes, and two holes
- (c) two vertical, and one slant asymptotes and one hole
- (d) one slant asymptote and one hole
- (e) three vertical asymptotes and no other asymptotes

2. If
$$f''(x) = \frac{3}{2}\sqrt{x} + \frac{2}{3}\frac{1}{\sqrt[3]{x}}$$
 and $f'(0) = f(0) = 0$, then $f(1) = 0$

- (a) 1
- (b) 2
- (c) $\frac{5}{6}$
- (d) $\frac{1}{6}$
- (e) 3

3. The slope of the normal line to the graph of

$$f(x) = \sinh^{-1}\left(\frac{2}{3}x\right)$$
 at $x = -2$ is

- (a) $-\frac{5}{2}$
- (b) 1
- (c) $-\frac{2}{3}$
- (d) $\frac{5}{4}$
- (e) $-\frac{5}{3}$

4. The graph of the function

$$f(x) = -2x - 4\sin x \,, \quad 0 \le x \le 2\pi$$

is decreasing on the interval(s)

- (a) $\left(0, \frac{2\pi}{3}\right)$ and $\left(\frac{4\pi}{3}, 2\pi\right)$
- (b) $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$
- (c) $\left(0, \frac{4\pi}{3}\right)$
- (d) $\left(\frac{\pi}{3}, \pi\right)$ and $\left(\frac{5\pi}{3}, 2\pi\right)$
- (e) $\left(\frac{2\pi}{3},\pi\right)$ and $\left(\frac{3\pi}{2},2\pi\right)$

5. If
$$f(x) = \frac{1}{30}x^6 - \frac{1}{3}x^4 + 11x + 19$$
, then

- (a) f has exactly two inflection points
- (b) f has exactly three inflection points
- (c) f is concave downward on $(2, \infty)$
- (d) f is concave downward on $(-\infty, -2)$
- (e) f is concave upward on (-2,2)

- 6. The slope of the tangent line to the curve $x \cos(xy) = 3$ at the point $\left(3, \frac{\pi}{6}\right)$ is
 - (a) $-\frac{\pi+6}{18}$
 - (b) $\frac{2\pi 1}{9}$
 - (c) $-\frac{\pi+6}{9}$
 - (d) $\frac{\pi 2}{18}$
 - (e) $-\frac{\pi+10}{18}$

7. If f(x) = (2x - 1)(3x - 2)(4x - 3)(5x - 4), then $\frac{f'(1)}{f(1)} =$

[Hint: You may use logarithmic differentiation]

- (a) 14
- (b) $\frac{11}{20}$
- (c) 11
- (d) $\frac{17}{20}$
- (e) 1

- 8. If the area A of a circle is increasing at the rate of 2π cm²/min, then at the moment when $A = \frac{\pi}{25}$ cm² the radius of the circle is increasing at the rate of
 - (a) 5 cm/min
 - (b) 6 cm/min
 - (c) 7 cm/min
 - (d) 4 cm/min
 - (e) 3 cm/min

- The shortest distance from the point (0,1) to the hyperbola 9. $x^2 - y^2 = 3$ is equal to
 - (a) $\sqrt{\frac{7}{2}}$
 - (b) $\sqrt{\frac{15}{2}}$ (c) $\frac{2}{3}$ (d) $\frac{7}{3}$

 - (e) $\sqrt{\frac{3}{2}}$

- If f' is continuous such that f(2)=0 and f'(2)=7, then $\lim_{x\to 0}\frac{f(2+3x)+f(2+5x)}{x}=$ 10.
 - (a) 56
 - (b) 14
 - (c) 60
 - (d) 0
 - (e) 7

- 11. Suppose that the line y = -2x + 1 is tangent to the curve y = f(x) when x = 1. If Newton's method is used to locate a root of the equation f(x) = 0 with $x_1 = 1$, then $x_2 = 0$
 - (a) 0.5
 - (b) 0.125
 - (c) 0.75
 - (d) 0
 - (e) 0.2

- 12. The difference between the absolute maximum value and the absolute minimum value of the function $f(x) = \ln(x^2 + x + 1)$ on the interval [-1, 1] is equal to
 - (a) ln 4
 - (b) $\ln\left(\frac{7}{2}\right)$
 - (c) $\ln\left(\frac{10}{3}\right)$
 - (d) ln 5
 - (e) $\ln(e+1)$

13. If
$$f(x) = \log_2\left(\frac{5}{x}\right)$$
, then $f^{(100)}(1) =$

- (a) $\frac{99!}{\ln 2}$
- (b) $\left(\frac{1}{5 \ln 2}\right)^{100} (100!)$
- (c) $-\frac{99!}{(\ln 2)^{100}}$
- (d) $-\left(\frac{1}{5\ln 2}\right)^{100} (100!)$
- (e) $\frac{99!}{(\ln 2)^{99}}$

- 14. The graph of the function $f(x) = \frac{3^x}{3^x + 1}$ has the following asymptotes
 - (a) two horizontal and no other asymptotes
 - (b) one vertical, one horizontal, and one slant asymptotes
 - (c) one vertical, one horizontal, and no slant asymptotes
 - (d) only one horizontal and no vertical asymptotes
 - (e) two horizontal, one slant, and no vertical asymptotes

- 15. If L(x) = mx + c is the linearization of $f(x) = (1 2\sin x)^{2/3}$ at x = 0, then m + c =
 - (a) $-\frac{1}{3}$
 - (b) 1
 - (c) $\frac{2}{3}$
 - (d) $-\frac{5}{3}$
 - (e) -1

- 16. If $f(x) = \operatorname{csch}\left(\frac{1}{2}x\right)$, then $f'(\ln 4) =$
 - (a) $-\frac{10}{9}$
 - (b) $\frac{4}{9}$
 - (c) $-\frac{8}{9}$
 - (d) $\frac{8}{9}$
 - (e) $-\frac{4}{9}$

- 17. The product of all critical numbers of the function $f(x) = x^{-1/5}(x-9)^2$ is
 - (a) -9
 - (b) 0
 - (c) $-\frac{9}{5}$
 - (d) 3
 - (e) -3

- 18. The sum of all numbers c that satisfy the conclusion of Rolle's Theorem for the function $f(x) = \frac{1-\sin x}{1+\sin x}$ on the interval $[0,\pi]$ is
 - (a) $\frac{\pi}{2}$
 - (b) π
 - (c) $\frac{3\pi}{2}$
 - (d) $\frac{3\pi}{4}$
 - (e) Rolle's Theorem is not applicable

19. If
$$f(x) = x^4 + 4x^3$$
, then

- (a) $f(-3) \le f(x)$ for all x
- (b) f has no local minimum values
- (c) f has one local maximum value
- (d) The graph of f is concave upward on (-2,0).
- (e) The graph of f has no inflection points.

$$20. \quad \lim_{x \to \infty} \left(1 + \frac{1}{2x} + \frac{3}{x^2} \right)^x =$$

- (a) \sqrt{e}
- (b) $e^{2/3}$
- (c) 1
- (d) $e^{3/2}$
- (e) $\frac{3}{2}$

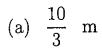
- 21. The slope of the tangent line to the graph of $y = \tan^{-1}(x \sqrt{9 + x^2})$ at x = 4 is
 - (a) 0.1
 - (b) 0.02
 - (c) 0.01
 - (d) 0.2
 - (e) 0.002

- Which one of the following statements is **TRUE** about the graph of $xy = x^2 + 9$?
 - (a) The graph lies between the lines x = 0 and y = x.
 - (b) The graph has a local maximum at (3,6).
 - (c) The graph has a local minimum at (-3, -6).
 - (d) The graph has no slant asymptote.
 - (e) The graph has one inflection point.

23. The number of the critical numbers of the function

$$f(x) = ||x^2 - 4| - 2|$$
 is

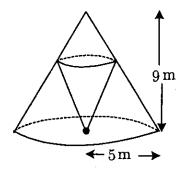
[Hint: You may sketch the graph of f]


- (a) 7
- (b) 5
- (c) 3
- (d) 1
- (e) 0

- 24. Let f be a differentiable function such that $f'(x) \leq 10$ for all x in the domain of f. If f(-1) = -2, then the largest possible value of f(4) is
 - (a) 48
 - (b) 12
 - (c) 62
 - (d) 14
 - (e) 51

- 25. Let $f(x) = x^{-1/4}$. Using differentials with x = 16 to estimate a value of f(15.84), the percentage error in the calculation of f(15.84) is
 - (a) 0.25%
 - (b) 0.125 %
 - (c) 0.5 %
 - (d) 0.75 %
 - (e) 0.55%

- 26. If the length of a rectangle is decreasing at the rate of 0.6 cm/min and the width is increasing at the rate of 0.3 cm/min, then the moment the length is 8 cm and the width is 6 cm, the angle between the diagonal and the length of the rectangle is
 - (a) increasing at the rate of $\frac{3}{50}$ rad/min
 - (b) decreasing at the rate of $\frac{1}{50}$ rad/min
 - (c) increasing at the rate of $\frac{9}{50}$ rad/min
 - (d) decreasing at the rate of $\frac{9}{50}$ rad/min
 - (e) increasing at the rate of $\frac{1}{50}$ rad/min


27. If a cone is inscribed in a larger cone with height 9 m and base radius 5 m so that its vertex is at the center of the base of the larger cone, then the inner cone has maximum volume when its base radius is [Volume of a cone = $\frac{\pi}{3}r^2h$].

(c)
$$\frac{8}{3}$$
 :m

(e)
$$\frac{7}{2}$$
 m

- A particle moves in a straight line and has velocity given by $v(t) = \frac{1+2t^2}{1+t^2}$. If the initial displacement of the particle is $s(0) = \frac{\pi}{4} \text{ cm}, \text{ then } s(1) =$
 - (a) 2 m
 - (b) $\frac{\pi}{2}$ m
 - (c) 3 m
 - (d) $\frac{3\pi}{4}$.m
 - (e) $\left(1+\frac{\pi}{4}\right)$ m