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Abstract

We provide necessary and suffi cient conditions for which an nth-order
linear differential equation has n linearly independent polynomial solutions.
Necessary conditions that can directly be ascertained from the coeffi cient
functions are also given.1

1 Introduction

Consider the equation

p0y + p1y
′ + · · ·+ pn−1y

(n−1) + pny
(n) = 0 (1)

where the pk are functions (of a single variable x) continuous on some real interval
over which pn is nonzero. If this equation has n linearly independent polynomial
solutions, then it is easy to see, using Cramer’s rule, that each

pk
pn
is a rational

function. We will therefore assume, without loss of generality, that the coeffi cients
pk in (1) are polynomials with no common factor and that pn is monic.
Determining conditions for which (1) has a fundamental set of polynomial solu-
tions is a problem that has been discussed by several authors when n = 2. In [3]
for example, Calogero provided conditions for a wide class of second-order linear
differential equations to have a general polynomial solution. See also Calogero [4]
in connection with a certain class of solvable N-body problems, Calogero and Yi
[5] concerning Jacobi polynomials, and Bagchi, Grandati and Quesne [2] on the
trigonometric Darboux-Pöschl-Teller potential.
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The main objective in this note is to give conditions, which do not seem to be
widely known, for which (1) has a fundamental set of polynomial solutions. In
Proposition 1, we provide necessary conditions that can quickly be ascertained
from the leading coeffi cients and degrees of the polynomials pk. Proposition 2,
while computationally more demanding, provides a necessary and suffi cient con-
dition.
Let K be the smallest integer k for which pk in (1) is not the zero polynomial.
Clearly, (1) has n linearly independent polynomial solutions if and only if the
equation

pKy + pK+1y
′ + · · ·+ pn−1y

(n−K−1) + pny
(n−K) = 0

has n −K linearly independent polynomial solutions. We will therefore assume
that p0 6= 0 in (1). For notational convenience, we will write each ph in (1) in
"exponential" form, ph =

∑
k≥0

phk
k!
xk with ph = 0 if h > n and, if ph 6= 0, we denote

its leading coeffi cient by γh (with γn = 1).

2 Results

We will need the following lemma.

Lemma 1. Let r1 < · · · < rn be a sequence of nonnegative integers and y1, . . . , yn
be monic polynomials with respective degrees d1 < · · · < dn. Consider the general-

ized Wronskian W
(
y1, . . . , yn
r1, . . . , rn

)
, i.e. the determinant of the n× n matrix whose

(i, j)th-element is y(rj)i . Then, either W
(
y1, . . . , yn
r1, . . . , rn

)
is the zero polynomial or

it has degree
∑n

i=1 (di − ri) and positive leading coeffi cient det
((

di
rj

))
1≤i,j≤n

.

Furthermore, if W
(
y1, . . . , yn
r1, . . . , rn

)
= 0, then W

(
y1, . . . , yn
s1, . . . , sn

)
= 0 for any sequence

s1 < · · · < sn of nonnegative integers satisfying ri ≤ si for all i.

Proof. Clearly, the degree ofW
(
y1, . . . , yn
r1, . . . , rn

)
does not exceed the sum

∑n
i=1 (di − ri)

of the degrees of the diagonal polynomials inW
(
y1, . . . , yn
r1, . . . , rn

)
, and the coeffi cient

c of x
∑n

i=1(di−ri) is the same as that of W
(
xd1 , . . . , xdn

r1, . . . , rn

)
(since the remaining

terms of the yi have lower order). Applying elementary operations on this deter-

minant, we obtain c = det
((

di
rj

))
1≤i,j≤n

. By [6], c is nonnegative and c > 0 iff
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ri ≤ di for each i. This implies degW
(
y1, . . . , yn
r1, . . . , rn

)
=
∑n

i=1 (di − ri) iff ri ≤ di

for each i. Suppose ri > di for some i. Then, in the determinant W
(
y1, . . . , yn
r1, . . . , rn

)
,

the only possibly nonzero entries in the first i rows are the first (i − 1) entries,

and so these i rows are linearly dependent and W
(
y1, . . . , yn
r1, . . . , rn

)
= 0. Suppose

now that s1 < · · · < sn is a sequence of nonnegative integers satisfying ri ≤ si

for all i. If W
(
y1, . . . , yn
s1, . . . , sn

)
6= 0, then its leading coeffi cient is det

((
di
sj

))
1≤i,j≤n

,

which is positive by the foregoing argument. Hence di ≥ si ≥ ri for all i, and

det

((
di
rj

))
1≤i,j≤n

> 0. This implies W
(
y1, . . . , yn
r1, . . . , rn

)
6= 0.

Proposition 2. Suppose (1) has n linearly independent polynomial solutions.
Then, for 0 ≤ k ≤ n,

(i) pk 6= 0

(ii) 1 + deg pk = deg pk+1

(iii) γk and γk+1 are integers with opposite signs.

(iv) deg pn ≤ −γn−1.

Proof. Let y1, . . . , yn be linearly independent polynomial solutions of the differ-
ential equation. We may clearly assume that the yi are monic with respective
degrees di where d1 < · · · < dn. Let rk1, . . . , rkn denote the strictly increas-
ing sequence consisting of the elements of {0, 1, 2, . . . , n}\{k} and let Wk :=

W

(
y1, . . . , yn
rk1, . . . , rkn

)
be the n × n determinant defined in the above lemma. A

straightforward application of Cramer’s rule to the system
p0
pn
yi+· · ·+

pn−1
pn

y
(n−1)
i =

−y(n)i (1 ≤ i ≤ n) , with appropriate interchanges of columns, shows that for
0 ≤ k ≤ n

pkWn = (−1)n−k pnWk (2)

By the above lemma, if Wk 6= 0, then its leading coeffi cient ck = det

((
di
rkj

))
(1 ≤ i, j ≤ n) is positive. Clearly, in this case,

degWk =
∑n

i=1 (di − rki) =
∑n

i=1di + k − n (n+ 1)

2

If pk 6= 0, then

deg pk + degWn = deg pn +
∑n

i=1di + k − n (n+ 1)

2
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and in particular,
deg pk − k = deg pn − n (3)

This shows that if pk and pk+1 are nonzero polynomials, then deg pk+1 = 1+deg pk.
Suppose next that k < n and pk+1 = 0. Clearly, rk+1,j ≤ rkj for each j. Hence, by
the lemma, Wk = 0 when Wk+1 = 0, i.e. pk = 0. This proves (i) and (ii).
To prove (iii), fix i in {1, . . . n} . For 0 ≤ k ≤ n, if pky

(k)
i is a nonzero polynomial,

then it has degree deg pk − k + di and leading coeffi cient γk (di)k , where, for any
number a, (a)k := a (a− 1) · · · (a− k + 1) , (a)0 := 1. Hence, by Eq. (3), we
obtain for each i,

n∑
k=0

γk (di)k = 0

i.e. the polynomial

f (x) =
n∑
k=0

γk (x)k

which has degree n, has the n distinct nonegative integer roots d1, . . . , dn. It is
then easy to infer that each γk is an integer. Part (iii) of the proposition now
follows from Equation (2).
Suppose next that pn =

∏
j

(x− rj) where the rj are the (not necessarily distinct)

complex roots of pn. By Eq. (2), each rj is a root of Wn (otherwise it would be

a common root for all the pk), and so pn divides Wn. Also, the coeffi cient −
n∑
i=1

di

of xn−1 in the polynomial f (x) can easily shown to be γn−1 −
n (n− 1)

2
, so that

−γn−1 =
n∑
i=1

di −
n (n− 1)

2
= degWn ≥ deg pn. This proves (iv). �

Remark 3. Suppose (1) has a fundamental set of polynomial solutions. Then,
using the above notation:
1. The strictly increasing sequence of degrees di of the polynomial solutions of

(1) satisfy
n∏
i=1

di = (−1)n γ0 and hence n! ≤ |γ0| . Similar bounds involving other

leading coeffi cients γk can easily be obtained using the fact that
n∏
i=1

(x− di) =
n∑
k=0

γk (x)k . Several upper bounds can also be obtained for dn, the highest degree

possible for a polynomial solution of (1); for example dn ≤
|γ0|

(n− 1)! . Note also

that if |γ0| is a prime power pα, then the degrees of all polynomial solutions of
(1) are also powers of p and

n (n− 1)
2

≤ α (by a simple argument on partitions

of α into distinct nonnegative parts), i.e. n ≤
√
1 + 8α− 1

2
.

4



2. By Equation (2),
pn−1
pn

= −Wn−1

Wn

. It is easy to see that
dWn

dx
= Wn−1, so that

e−
∫ pn−1

pn
dx is a polynomial of the same degree as Wn, i.e. its degree is −γn−1.

This also means that if pn =
∏
j

(x− rj) , then
pn−1
pn

=
∑
j

Aj
x− rj

where the Aj

are negative integers. In particular, all the roots of pn that are not roots of pn−1
must be simple.

We next give a necessary and suffi cient condition for (1) to have polynomial
solutions only. By the above proposition, we will assume that deg ph = h + d

(0 ≤ h ≤ n) where d := deg p0, so that phk = 0 if k > h + d. Recall that ph has
leading coeffi cient γh and that ph =

∑
k≥0

phk
k!
xk with ph = 0 if h > n.

Proposition 4. For each positive integer N, let AN be the (N + d+ 1)×(N + 1)

matrix with (i, j)th entry
i−1∑
k=0

(
i− 1
k

)
pk+j−i,k. Then (1) has a fundamental set

of polynomial solutions if and only if there is a strictly increasing sequence of
positive integers d1, . . . , dn such that rankAdt = rankA′dt ( 1 ≤ t ≤ n), where
A′dt is the matrix obtained from Adt by deleting its last column. In this case,

d1, . . . , dn are the roots of the polynomial
n∑
k=0

γk (x)k (and are the degrees of n

linearly independent solutions of (1)).

Proof. Suppose that (1) has a polynomial solution of degree N, q =
∑
l≥0

ql
l!
xl say

(with ql = 0 if l > N). Direct substitution gives
∑
h≥0

ph
∑
l≥0

qh+l
l!
xl = 0, i.e.

∑
h≥0

∑
k≥0

∑
l≥0

(
k + l

k

)
phkqh+l

xk+l

(k + l)!
= 0.

Relabeling indices gives

∑
u≥0

∑
h≥0

∑
0≤k≤u

(
u

k

)
phkqu+h−k

xu

u!
= 0 (0 ≤ u ≤ N + d).

We therefore have
∑
h≥0

∑
0≤k≤u

(
u

k

)
phkqu+h−k = 0, which gives the following system

in the unknowns ql (with the convention that phk = 0 if h < 0)

N∑
l=0

∑
0≤k≤u

(
u

k

)
pl+k−u,kql = 0 (0 ≤ u ≤ N + d) . (4)
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Let AN be as in the statement of the proposition, i.e. the (N + d+ 1)× (N + 1)

coeffi cient matrix
[
i−1∑
k=0

(
i− 1
k

)
pk+j−i,k

]
of the system. It is then easy to show

that this system has a solution (q0, . . . , qN) with qN 6= 0 if and only if the rank
of AN is equal to the rank of the matrix A′N obtained from AN by deleting its
last column (see [1, Lemma 1]). If, conversely, the system (4) has a solution
(q0, . . . , qN) with qN 6= 0, then, clearly, (1) will have a polynomial solution of
degree N. �

Remark 5. The polynomial solutions of (1) can easily be computed from the
matrices AN : if we denote by C0, . . . , CN the columns of AN , then, from the proof
above, the coeffi cients of a monic solution q0 + q1x+ · · ·+ qN−1xN−1 + xN of (1)
satisfy CN = −q0C1 − · · · − qN−1CN−1.
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