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Abstract

We consider a stochastic differential equation ∂tX = f(Xt, t) + η, where η is
a mixed noise. The Itô formula, for both cases Poisson and mixed noise, will be
given. The truncated moments of mixed noise will be calculated. The generalized
Feynman graphs and rules will be introduced, and a graphical representations of
the truncated moments of mixed noise will be provided.
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1 Introduction and overview

We consider the stochastic differential equation (SDE):

{

∂
∂t
Xt(x) = f(Xt, t) + η(t), (t, x) ∈]0, ∞[×R

d

X0(x) = x0, x0 ∈ R
d.

(1)

where η = η(t) is a stochastic noise, Xt, f(x, t) ∈ C2(Rd × [0,∞[).
It is known that for Riemann integrals one use the fundamental theorem of calculus, which
establishes a connection between integration and differentiation, however for stochastic integra-
tion we do not have such results but we have an Itô integral version of the chain rule called Itô
formula.
In the case when f(x, t) ∈ C2(Rd × [0,∞[), and η a Gaussian noise the Itô formula is known,
see, e.g, [11].

The Itô formula is one of the most powerful tools of the stochastic analysis due to its vast
range of applications, for example in Mathematical Finance, see. e.g [11]. However the applica-
tions of this formula to other fields like graph theory seems to be not well studied. It is therefore
the aim of this work to provide a link between graph theory and Itô calculus.
In this work the Itô formula for pure jump noise is obtained for a given polynomial f , but it

can be extended further by interpreting

q
∑

l=1

ηl

l!

( ∂

∂X

)l

f , as a pseudo differential operator in

X. Moreover, we will show how the Poisson noise can be scaled to obtain a Gaussian noise,
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and hence we get back to the classical Itô formula. Finding graphical representations to the
truncated moments of mixed noise seems to be of a great importance since it will simplify the
stochastic integrations and formulas therein, also it will establishes a connection between graph
theory and Itô calculus.
The graphs introduced, during this work, are called Feynman graphs see, e.g [7, 15], and a
numerical value1 will be assigned to each graph.
Our graphical model is not restricted to SDE of type (1), in fact one can generalize equation
(1) and make it more complicated, e.g by introduction of non linear terms, e.g for force F of
gradient type, F = ∇V we obtain a non-linear SDE and one can ask the same questions as
before, again expansion into graphs is possible. Generalizing further we pass from SDE’s to the
stochastic partial differential equations (SPDE’s), see.e.g [8, 15].
Before we go over to describe the contents of the present paper, let us mention that, to the best
of our knowledge, a graphical representations of the noise as done in this work, have not been
considered before.
Let us now describe the single sections of the article:
In the next section we will start by some useful notations and representations of the Poisson
noise, we consider the case of a polynomial function f , then we prove the Itô formula for pure
jump noise.
Section 3 will be devoted to Gaussian and mixed noise, we will show how one can scale the
Poisson noise to obtain Gaussian noise.
Section 4 is concerned with the proofs of the main results on the graphical representations of
the truncated moments of mixed noise, for this aim we will introduce the Feynman graph and
Feynman rules.

2 Stochastic equations driven by Poisson noise

In this section we start by introducing some useful notations:
Let S(Rd) be the Schwartz Space of all rapidly decreasing functions on R

d endowed with the
Schwartz topology, its topological dual is the Space of tempered distribution noted by S′(Rd).
We denote by 〈. , .〉 the dual pairing between S(Rd) and S′(Rd).
Let ψ : R −→ C be the Lévy characteristic, see [14], represented by

ψ(t) = i at−
σ2 t2

2
+ z

∫

Rd\{0}
(eist − 1) dr(s), ∀ t ∈ R. (2)

Here a ∈ R
d, σ2 ≥ 0, z ≥ 0 and r a probability measure on R

d \ {0} such that its Fourier
transform is entirely analytic.
Now we will consider a representation of the Poisson noise in terms of corresponding Poisson
distribution:
Let Λn ⊂⊂ R

d be a monotone sequence of compact sets s.t, Λn ↑ R
d as n −→ ∞ and Λ0 = ∅.

1The procedure of given each graph a numerical value is called ”perturbation theory”.
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For n ∈ N, Let Ln = Λn\Λn−1 and we denote the Lebesgue volume of Ln by | Ln |. Let

ηpn =

Nz
T

∑

j=1

Sn
j δTn

j
, T n

j ∼
dx

T
|[0, T ], T > 0, 2 (3)

where δx is the Dirac measure of mass one in x, {Sn
j }j ∈N is a family of real valued and indepen-

dent random variables with law given by r and N z
T is a poisson random variable with intensity

z | Ln |, i.e,

P (N z
T = k) = e−z|Ln| (z | Ln |)k

k!
; k ∈ N0 (4)

The characteristic functional of the noise ηpn for any function h ∈ S(Rd) such that supph ⊆ Ln

is given by:

〈 ei η
p
n(h)〉 = 〈 ei

∑Nz
T

j=1 Sn
j h(Xn

j )〉

= e−z |Ln|
∞
∑

l=0

(z | Ln |)l

l!

(

∫

Ln

∫

Rd \ 0
ei s h(x) dr(s)

dx

| Ln |

)l

= exp{ z

∫

Ln

∫

Rd \ 0
( ei s h(x) − 1)dr(s) dx} = Cη

p
n
(h), ∀h ∈ S(Rd). (5)

For a fixed random parameter w, let T1(w), T2(w), · · ··, TNz
T
(w) be the random times at which

the jumps occur.

To avoid notations complications we will restrict to one dimension,(generalizing to d > 1
will be straightforward), we consider also polynomial transformations, i.e, we let f(X, t) =
∑N

q=0 Cq(t)X
q , N ∈ N.

Lemma 2.1. Let X and S be two random variables then:

(X + S)q −Xq =

q
∑

l=1

Sl

l!

( ∂

∂X

)l

Xq, q ∈ N (6)

Proof. We have

(X + S)q −Xq =

q
∑

l=0

q!

(q − l)! l!
Xq−l Sl −Xq

=

q
∑

l=1

q!

(q − l)! l!
Xq−l Sl

=

q
∑

l=1

q!

(q − l)! l!

( ∂

∂X

)l

Xq ×
(q − l)!

q!
Sl

=

q
∑

l=1

Sl

l!

( ∂

∂X

)l

Xq

2The index p here, is just a notation and we mean poisson noise.
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Since df
dt
(X, t) = ḟ(X, t) =

∑N
q=0

˙(

Cq(t)Xq
)

, it suffices then to determine
˙(

CqXq
)

for t 6∈

{T1, · · ·, TNz
T
}.

Proposition 2.2. Let T1, · · ·, TNz
T

be a discrete random times and X̆ be a derivative without
stochastic terms then:

˙(

CqXq
)

= ĊqX
q + q Xq−1 X̆ +

q
∑

l=1

ηl

l!

( ∂

∂X

)l

CqX
q (7)

Proof. Let X(T−
j ) = lim

t↑Tj

X(t) and Sj = X(Tj)−X(T−
j ), we have

˙(

CqXq
)

= ĊqX
q + q Xq−1 Ẋ

= ĊqX
q + q Xq−1 X̆ +

Nz
T

∑

j=1

δTj
(t)Cq

[(

X(T−
j ) + Sj

)q

− Xq(T−
j )

]

,

using lemma (2.1) and the fact that ηl =
∑Nz

T

j=1 S
l
j δTj

, which is again a poisson random field,
we obtain

˙(

CqXq
)

= ĊqX
q + q Xq−1 X̆ +

Nz
T

∑

j=1

δTj
(t)

q
∑

l=1

Sl
j

l!

( ∂

∂X

)l

Xq

= ĊqX
q + q Xq−1 X̆ +

q
∑

l=1

ηl

l!

( ∂

∂X

)l

CqX
q. (8)

By lemma (2.1) and proposition (2.2), the following results holds:

Theorem 2.3. The Itô formula for pure jump noise is given by:

ḟ(X, t) =
∂f

∂t
(X, t) +

∂f

∂X
(X, t) Ẋ +

q
∑

l=2

ηl

l!

( ∂

∂X

)l

f(X, t) (9)

Proof. From proposition (2.2) we have:

ḟ(X, t) =
N
∑

q=0

ĊqX
q +

N
∑

q=0

q Xq−1 X̆ +

q
∑

l=1

ηl

l!

( ∂

∂X

)l
N
∑

q=0

CqX
q

=
∂f

∂t
(X, t) +

∂f

∂X
(X, t) X̆ +

q
∑

l=1

ηl

l!

( ∂

∂X

)l

f(X, t)

=
∂f

∂t
(X, t) +

∂f

∂X
(X, t) Ẋ +

q
∑

l=2

ηl

l!

( ∂

∂X

)l

f(X, t) (10)
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3 How to obtain a Gaussian noise from Poisson pro-

cess

We consider the generalizing functional of a function f for a Poisson noise ηp:

Cηp(f) = exp
(

z

∫ T

0

∫

Rd\{0}
(ei s f(t) − 1) dr(s) dt

)

, z > 0, (11)

where
∫

Rd\{0} s dr(s) = 0, and let c2 =
∫

Rd\{0} s
2 dr(s).

Lemma 3.1. Let Cηp be the generalizing function of a function f given by equation (11) and
ηg the Gaussian noise, then:

lim
z−→∞

Cηp(f) = Cηg (f) =

{

exp
(

− c2
2

∫ T

0 f2(t) dt
)

, if n = 2

0 , otherweise
(12)

Proof. Consider the transformation s −→ s√
z
and let z −→ ∞, then:

lim
z−→∞

Cηp(f) = lim
z−→∞

exp
(

z

∫ T

0

∫

R\{0}
(e

i s√
z
f(t)

− 1) dr(s) dt
)

= lim
z−→∞

exp
(

z

∫ T

0

∫

R\{0}
e
i s√

z
f(t)

dr(s) dt
)

= lim
z−→∞

exp
(

z

∫ T

0

∫

R\{0}

∞
∑

n=0

in

n!

sn

z
n
2

fn(t) dr(s) dt
)

= exp
(

∫ T

0

∫

R\{0}
−
1

2
s2 f2(t) dr(s) dt

)

= exp
(

−
c2

2

∫ T

0
f2(t) dt

)

= Cηg (13)

Lemma (3.1) shows that one can scale the Poisson noise to obtain a Gaussian noise with intensity
c2, under this scale it is therefore important to think about the Itô formula in case of higher
order ηq ′s .

Lemma 3.2. Let ηp be the jump noise given by equation (3), then the following holds:

lim
z−→∞

C(η
p)q (f) =

{

exp
(

i c22
∫ T

0 f(t) dt
)

, if q = 2, n = 1

1 , if q > 2, n 6= 1
(14)

Proof.

lim
z−→∞

C(η
p)q (f) = lim

z−→∞
exp

(

z

∫ T

0

∫

R\{0}

∞
∑

n=0

in

n!

sqn

z
qn

2

fn(t) dr(s) dt
)

=

{

exp
(

i c22
∫ T

0 f(t) dt
)

, if q = 2, n = 1

1 , if q > 2, n 6= 1
(15)
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empty vertex full vertex leg of type 1 leg of type 2

◦ •
b

b

bc
b

b

Table 1: Different types of vertices and legs.

Applying lemmas (3.1) and (3.2) to the Itô formula obtained by theorem (2.3), one thus get the
following result:

Theorem 3.3. Let η be a Poisson noise given by its generalizing functional (11) then:

lim
z−→∞

ḟ(X, t) =
∂f

∂t
(X, t) +

∂f

∂X
(X, t) +

c2

2

( ∂

∂ X

)2
f(X, t) (16)

Proof.

lim
z−→∞

ḟ(X, t) = lim
z−→∞

[∂f

∂t
(X, t) +

∂f

∂X
(X, t) Ẋ +

q
∑

l=1

ηl

l!

( ∂

∂X

)l

f(X, t)
]

=
∂f

∂t
(X, t) +

∂f

∂X
(X, t) +

c2

2

( ∂

∂ X

)2
f(X, t) (17)

If we assume that the random variable X depend on z, i.e, X = Xz, and in the Itô formula, ηp

will be replaced by ηg, a pure Gaussian noise, we obtain the classical Itô formula with c2 = σ2.

4 A graphical representation of the noise

In this section we will develop a graphical representation for the mixed noise, for this aim we
need first to introduce the Feynman graph and Feynman rules and to calculate the truncated
moments of mixed noise.
Let Gr(t, x) be the Green function which satisfies :

{

∂Gr(t, x)
∂t

= Gr(t, x) + δ(x) , (t, x) ∈ ]0,∞[×R
d

Gr(t, x) = 0, t < 0
(18)

Here δ(x) is the Dirac distribution.
In the following we will assign to each numerical expression a graphical symbol:

• A ”propagator” of type Gr(t− s) will be symbolized by
b

b

• A ”propagator” of type δ(t− s) will be symbolized by bc
b

b

• A contribution η(s) will be symbolized by a full vertex •

• For the power of X, i.e, Xp we will consider p legs of type 1 connected to the same full
vertex.

The different types of vertices and legs are resumed in table 1.
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Definition 4.1. A Feynman graph is a graph with two types of vertices called empty vertex and
full vertex, by definition full vertices are distinguishable and have distinguishable legs whereas
empty vertices are non-distinguishable and have non distinguishable legs. Edges are non-directed
and connect full and empty vertices, but never connect two full or two empty vertices. The legs
of type 1 connect the full vertices whereas the legs of type 2 connect the empty vertices.

We denote the family of all Feynman graph G with n vertices by F(n).

Definition 4.2. Let x1, ..., xk ∈ R
d, I a partition of the set {1, ..., n + p}, I ∈ P(n + p),

I = {I1, ..., Ik} the truncated moments functions 〈η(x1) · · · η(xn+p)〉
T are recursively defined by:

〈

n+p
∏

i=1

η(zi)〉 =
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

〈Il〉
T (19)

where 〈Il〉
T = 〈

∏

j∈Il
η(xj)〉

T .

Proposition 4.3. Let η be a mixed noise, then the ordinary moments 〈Xp(t)η(s1) · · · η(sn)〉
are given by:

〈Xp(t)η(s1)··· η(sn)〉 =

∫

R+

Gr(t−t1)···

∫

R+

Gr(t−tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

〈
∏

j∈Il
η(tj)〉

T ds1···dsn dt1···dtp .

(20)

Proof. Let I = {I1, · · ·, Ik} ∈ P(n + p), then

〈Xp(t)η(s1) · · · η(sn)〉 = 〈X(t) · · · X(t)η(s1) · · · η(sn)〉

=

∫

R+

Gr(t− t1) · · ·

∫

R+

Gr(t− tp) 〈η(t1) · · · η(tp)η(s1) · · · η(sn)〉

ds1 · · · dsn dt1 · · · dtp

=

∫

R+

Gr(t− t1) · · ·

∫

R+

Gr(t− tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

〈
∏

j∈Il
η(tj)〉

T ds1 · · · dsn dt1 · · · dtp

Where s1 = tp+1, · · ·, sl = tp+l.

The following result simplify the calculus of the truncated moments
k
∏

l=1

〈
∏

j∈Il
η(tj)〉

T :

Theorem 4.4. The truncated moment functions of the (mixed) noise η are given by the following
formula

〈η(x1) · · · η(xn)〉
T = cn

∫

Rd

δ(x − x1) · · · δ(x− xn)dx . (21)

where

cn = (−i)n
dnψ(t)

dtn
| t = 0

= δn, 1a+ δn, 2σ
2 + z

∫

Rd\{0}
sndr(s) (22)

δn, n′ being the Kronecker symbol.
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Proof. For the proof we refer to [2, 8].

Definition 4.5. The following algorithm denoted by B(G) and known as Feynman rule assign
a numerical value to each Feynman graph G:

• Assign a value s ∈ R+ to each empty vertex.

• For each leg of type 1 multiply with Gr(t − s) and for each j-th leg of type 2 multiply
with δ(s − sj).

• For each empty vertex with n legs multiply with cn.

• Integrate, with respect to Lebesgue measure, over all s.

Theorem 4.6. Let I = {I1, · · ·, Ik} ∈ P(n+p), then the ordinary moments of order p are given
by:

〈Xp(t)η(s1)··· η(sn)〉 =

∫

R+

Gr(t−t1)···

∫

R+

Gr(t−tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

c♯ Il

∫

R+

∏

j ∈ Il

δ(tj−t) ds1···dsn dt1···dtp

(23)

Proof. By proposition (4.3) and theorem (4.4), we have:

〈Xp(t)η(s1) · · · η(sn)〉 =

∫

R+

Gr(t− t1) · · ·

∫

R+

Gr(t− tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

〈
∏

j∈Il
η(tj)〉

T ds1 · · · dsn dt1 · · · dtp

=

∫

R+

Gr(t− t1) · · ·

∫

R+

Gr(t− tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

∫

R+

∏

j ∈ Il

c♯ Il δ(tj − t) ds1 · · · dtp

=

∫

R+

Gr(t− t1) · · ·

∫

R+

Gr(t− tp)
∑

I∈P(n+p)
I={I1,...,Ik}

k
∏

l=1

c♯ Il

∫

R+

∏

j ∈ Il

δ(tj − t) ds1 · · · dtp

.
The following example provide a graphical representation of the moments of the noise in the
case when n = 2:
Example. The ordinary moments of order 2 are given by:

〈X2(t)η(s1)η(s2)〉 = c22

∫ ∞

0
G2

r(t− s) δ(s1 − s2) ds + 2c22

∫ ∞

0
Gr(t− s)Gr(t− s̄)δ(s1 − s2) dsds̄

+ c4

∫ ∞

0
G2

r(t− s) δ(s1 − s2) ds, (24)

following definition (4.5) the corresponding graphical representation will be:

〈X2(t)η(s1)η(s2)〉 = bcb

b

bc
b

b
+ 2

bc

bc

b

b
+ bcb

b

b

b
(25)

To derive now the graphical representation of the truncated moments, we need first mixed
truncated expectations of ηq ′s and η′s:
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Proposition 4.7. The truncated moment of the (mixed) noise is given by:

〈ηq(s1) · · · η
q(sj)η(sj+1) · · · η(sn)〉

T = cjq+n−j

∫

R+

n
∏

l=1

δ(sl − s) ds (26)

Proof. By application of the Fourier transform we have:

E[ei (η(f)+ηq (g))] = e−t z
∞
∑

n=0

(zT )n

n!

(

∫ T

0

∫

R\{0}
ei (s f(t)+sq g(t)) dr(s) dt

)n

= exp
(

z

∫ T

0

∫

R\{0}
(ei (s f(t)+sq g(t)) − 1) dr(s) dt

)

= Cη(f)+ηq (g) (27)

Hence

〈ηq(s1) · · · η
q(sj)η(sj+1) · · · η(sn)〉

T = cjq+n−j

∫

R+

n
∏

l=1

δ(sl − s) ds (28)

By definition (4.5) and proposition (4.7) we derive the following result:

Theorem 4.8. The graphical representation of the truncated moments of the mixed noise is given
by a sum over all Feynman graphs that are evaluated according to the rule fixed by definition
(4.5), i.e:

〈ηq(s1) · · · η
q(sj)η(sj+1) · · · η(sn)〉

T =
∑

G∈F(n)

B(G, η). (29)

Proof. Taking expectations with a collection of η′s, we see from the form of the truncated
functions calculated above that the q−legs, 1 ≤ q ≤ p, can only be connected with the same
empty vertex and the q−lines is also evaluated with a dirac distribution δ, however to each
empty vertex with q1 + · · ·+ qn + l legs we should multiply with Cq1+···qn+l.
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