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Abstract: A simpler proof of the joint moment generating function (MGF) of sample
mean and variance in the multivariate normal case is presented, as a prelude to in-
dependence of sample mean and variance. Thanks to the joint MGF of sample mean
and variance, a result is given for the MGF of a singular Wishart distribution. The
Joint distribution of sample mean and variance is exhibited for a class of elliptically
contoured distributions and the result is concluded by illustrations for the univariate
Students t-distribution.
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1 Introduction

Sample mean and variance based on normal population are independent. A number of proofs
has been in the literature. For proofs based on Helmerts transformation, we refer to Rao (1973,
182) and that for depending on moment generating functions, we refer to Hogg and Craig (1978,
172) and Rohatgi (1984, 523). In case of multivariate normal distribution, the proof of statistical
independence between sample mean and variance based on moment generating function is also
known. We present a simple proof along the line of Laradji and Joarder (2014). It is known
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that the sample mean and variance are independent if and only if the sample comes from normal
distribution (Zinger, 1951, Kagan, Linnik and Rao, 1973). It would be desirable to know if the
sample mean and variance in other distributions are uncorrelated. Of particular interest would be
to check the uncorrelation of distributions that shares similar properties as the normal distribution,
say, for example, symmetry.

Consider a random sample X1, . . . ,Xn, (n = 2, 3, . . .) from a p-dimensional cumulative distri-
bution function (cdf) F with p-dimensional probability density function f . We define the sample
mean vector X̄ and variance-covariance (variance for short) matrix S respectively by

X̄ =
1

n

n∑
j=1

Xj = (X̄1, . . . , X̄p)
T , X̄i =

1

n

n∑
j=1

Xij ,

and

Sx =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)T , n ≥ 2.

In Section 3, we provide a simple proof of joint moment generating function of sample mean and
variance for broad spectrum of readers, where an effort is put to find the moment generating
function of a singular Wishart distribution. Section 4 is allocated for the joint density of sample
mean and variance in elliptically contoured distributions. Finally in Section 5, we provide some
illustrations.

2 Preliminaries & Notation

We denote the space of all positive definite (pd) matrices of order p by S(p).
In the following we present a new and very simple proof of the independence of sample mean

vector and variance matrix for independently and identically distributed (iid) normal random vari-
ables, extending the result of Laradji and Joarder (2014) to the multivariate case.

Theorem 2.1. Let the random variables X1, . . . ,Xn (n ≥ 2) be iid according to Np(µ,Σ), µ ∈ Rp
and Σ ∈ S(p). Then the joint mgf of the sample mean and variance satisfies

MX̄,Sx
(t,T ) =MX̄(t)MSx(T ),

where t = (t1, . . . , tp)
T ∈ Rp and T = (Tij) ∈ S(p), i, j = 1, . . . , p. Then X̄ and Sx are independent.

Proof: Without loss of generality, we assume µ = 0, Σ = Ip. Then the joint mgf of X̄ and Sx is
given by

MX̄,Sx
(t,T ) =

1

(2π)
np
2

∫
Rp
. . .

∫
Rp

exp
(
tT x̄+ trTsx

)
exp

(
−1

2

n∑
i=1

xTi xi

)
dx1 . . . dxn

=
1

(2π)
np
2

∫
Rp
. . .

∫
Rp

etr (Tsx) exp

(
−1

2
Q

)
dx1 . . . dxn

where etr(.) = exp(tr(.)), x̄ = 1
n

∑n
i=1 xi, (n− 1)sx =

∑n
i=1(xi − x̄)(xi − x̄)T , and

Q =

n∑
i=1

xTi xi − 2tT1 x̄ =

n∑
i=1

(
xi −

t1
n

)T (
xi −

t1
n

)
− tT1 t1
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Then, we obtain

MX̄,Sx
(t,T ) =

1

(2π)
np
2

exp

(
tT1 t1
2n

)
×
∫
Rp
. . .

∫
Rp

etr (Tsx) exp

(
−1

2

n∑
i=1

(
xi −

t1
n

)T (
xi −

t1
n

))
dx1 . . . dxn

Now, make the transformation ui = xi − 1
nt1, (i = 1, . . . , n). Then we have sx = su, and hence

MX̄,Sx
(t,T ) = exp

(
tT1 t1
2n

)
I(T ;u), (1)

where

I(T ;u) =

∫
Rp
. . .

∫
Rp

1

(2π)
np
2

etr (Tsu) exp

(
−1

2

n∑
i=1

uTi ui

)
du1 . . . dun.

Obviously, I(T ;u) = MSu(T ) where (n − 1)Su =
∑n

i=1(Ui − Ū)(Ui − Ū)T and Ui ∼ Np(0, Ip),
(i = 1, . . . , n). Thus, I(T ;u) = I(T ;x) = MSx(T ) for the random sample Xi ∼ Np(0, Ip), (i =

1, . . . , n). Inasmuch asMX̄(t1) = exp
(
tT1 t1
2n

)
, in this case; it follows from (1), thatMX̄,Sx

(t,T ) =

MX̄(t)MSx(T ). By uniqueness property of the mgf, this proves that the sample mean and variance
are independent. �

3 Joint Moment Generating Function of Sample Mean and Vari-
ance in Multivariate Normal Distribution

In this section, we assume that we have a iid sample from a p-dimensional (dim) normal (Np(µ,Σ))
distribution. We present an inductive proof of the joint moment generating function of sample mean
and variance. We will require the following theorem which is an extension to the result of Hogg
and Craig (1978, 84-85).

Theorem 3.1. Let X and Y be p-dim random vector and p× p-dim random matrix respectively,
that have the joint pdf fX,Y (., .) and the marginal pdfs fX(.) and fY (.) respectively. Furthermore,
let MX,Y (t,T ) be the mgf of the distribution. Then X and Y are stochastically independent iff

MX,Y (t,T ) =MX,Y (t,0)MX,Y (0,T )

Proof: Without loss of generality, suppose both random vectors X and Y are continuous. Let X
and Y be independent. Then

MX,Y (t,T ) = E
[
exp

(
tTX + trTY

)]
= MX,Y (t,0)MX,Y (0,T ).

Conversely, if MX,Y (t,T ) =MX,Y (t,0)MX,Y (0,T ), then∫
y∈S(p)

∫
x∈Rp

et
T
1 x+trTyfX,Y (x,y)dxdy =

[∫
Rp
et
TxfX(x)dx

][∫
S(p)

etrTyfY (y)dy

]
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=

∫
S(p)

∫
Rp
et
Tx+trTyfX(x)fY (y)dxdy.

By the uniqueness of mgf we must have fX,Y (x,y) = fX(x)fY (y). It follows that X and Y are
independent.

The following result is an attempt to find the mgf of the singular Wishart distribution.

Theorem 3.2. Let X1, . . . ,Xn,Xn+1 be iid observations of size n+ 1 ≥ 3 from Np(µ,Σ), where

µ ∈ Rp, Σ ∈ S(p). Further, let U = n(Xn+1−X̄)(Xn+1−X̄)T

(n+1) trΣ . Then

MU

(
tr Σ

n
t2

)
= |Ip −

2

n
UΣ|−

1
2

Proof: For our purpose and notational convenience, let X̄n+1 and Sn+1 denote the sample mean
and variance based on n+ 1 observations. Then we have the following relations

X̄n+1 =
n

n+ 1
X̄ +

1

n+ 1
Xn+1,

and Sn+1 =
n− 1

n
Sx +

1

n+ 1
(Xn+1 − X̄)(Xn+1 − X̄)T .

Thus, we have

MX̄n+1,Sn+1
(t,T ) = E

[
exp

(
tT X̄n+1 + trTSn+1

)]
= E

{
tT
(

n

n+ 1
X̄ +

1

n+ 1
Xn+1

)
+ trT

((
1− 1

n

)
Sx +

1

n+ 1
(Xn+1 − X̄)(Xn+1 − X̄)T

)}
= MX̄,Sx

(
n

n+ 1
t,
n− 1

n
T

)
MXn+1

(
1

n+ 1
t

)
MU

(
tr Σ

n
T

)
. (1)

According to Theorem 2.1, and using the facts that Sx ∼Wp(n− 1,Σ/(n− 1)),

MX̄(t) = exp

(
tTµ+

1

2n
tTΣt

)
MSx(T ) = |Ip −

2

n− 1
UΣ|−

1
2

(n−1),

where U = UT , ujj = tjj and ujk = ukj = 1
2 tjk (j < k), we have

MX̄,Sx
(t,T ) = exp

(
tTµ+

1

2n
tTΣt

)
|Ip −

2

n− 1
UΣ|−

1
2

(n−1).

Thus,

MX̄,Sx

(
n

n+ 1
t,
n− 1

n
T

)
= exp

(
n

n+ 1
tTµ+

n

2(n+ 1)2
tTΣt

)
|Ip −

2

n
UΣ|−

1
2

(n−1)

MX̄n+1,Sn+1
(t,T ) = exp

(
tTµ+

1

2(n+ 1)
tTΣt

)
|Ip −

2

n
UΣ|−

1
2
n. (2)

Substituting (2) in (1), and after some algebra, yields the results.
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4 Joint Distribution of Sample Mean and Variance for a Class of
Elliptically Contoured Distributions (ECD)

Firstly, we give a general definition of ECD and secondly, the weighting representation of ECDs
due to Chu (1973) will be presented. This representation suggests a broader class than that of
variance mixture of normal distributions, since the weights are not always positive, however in the
latter class we involve positive weights; see Arashi et al. (2013) for more details.

Definition 4.1. It is said that the random vector X has a p-dim elliptically contoured distribution
with location µ ∈ Rp, scale Σ ∈ S(p) and density generator g : R+ → R+, if it has the following
density function

f(x) = |Σ|−
1
2 g
{

(x− µ)TΣ−1(x− µ)
}

In this case, we designate X ∼ Ep(µ,Σ, g).

In the following, the mixture (weighting) representation of the density function of ECDs, due
to Chu (1973) is provided.

Lemma 4.1. Let X ∼ Ep(µ,Σ, g), µ ∈ Rp, Σ ∈ S(p), and g : R+ → R+. Then the density
function of X has the following weighting representation

f(x) =

∫
w(t)hNp(µ,t−1Σ)(x)dt (1)

where w(t) is the weighting function given by

w(t) = (2π)
p
2 |Σ|

1
2 t−

p
2L−1[f(s)], s =

1

2

(
xTΣ−1x

)
(2)

where L−1[f(s)] denotes the inverse Laplace transform of f(s).

Not necessarily that all the distributions in the ECD class as in Definition 4.1 satisfy the
weighting representation. However, most well-known distributions have this representation feature.
See Arashi et al. (2013) and references therein for details and applications.

Theorem 4.1. Let X1, . . . ,Xn be iid observations of size n ≥ 2 from Ep(µ,Σ, g), where µ ∈ Rp,
Σ ∈ S(p), and g : R+ → R+. Then the joint density of (X̄,Sx) is given by

fX̄,Sx
(x̄, sx) =

(n− 1)
p(n−1)

2 |Σ|−
n
2

π
p
2 2

np
2 Γp

(
n−1

2

) |sx|n−p−2
2

∫
t
np
2 etr

(
−1

2
tH

)
w(t)dt

where

H = Σ−1
[
n(x̄− µ)(x̄− µ)T + (n− 1)sx

]
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Proof: Suppose that primarily we have a random sample from Np(µ, t−1Σ). Since under normality
X̄ and Sx are independent (see Theorem 2.1), the joint density of (X̄,Sx), under normality, is
given by

f tX̄,Sx
(x̄, sx) = f tX̄(x̄)f tSx

(sx)

=
(n− 1)

p(n−1)
2 t

np
2 |Σ|−

n
2

π
p
2 2

np
2 Γp

(
n−1

2

) |sx|
n−p−2

2

× etr

{
− t

2
Σ−1

[
n(x̄− µ)(x̄− µ)T + (n− 1)sx

]}
Thus, applying Lemma 4.1, the joint density of (X̄,Sx) is achieved as

fX̄,Sx
(x̄, sx) =

∫
w(t)f tX̄,Sx

(x̄, sx)dt

which with some algebra, completes the proof.

4.1 Joint Distribution of Sample Mean and Variance for the t-Distribution

Definition 4.2. It is said that the random vector X has p-dimensional t-distribution with location
µ ∈ Rp, scale Σ ∈ S(p) and degrees of freedom γo ≥ 1, if it has the following density function

f(x) =
Γ
(γo+p

2

)
|Σ|−

1
2

(πγo)
p
2 Γ
(γo

2

) {1 +
1

γo
(x− µ)TΣ−1(x− µ)

}− 1
2

(γo+p)

In this case, we designate X ∼M (p)
t (µ,Σ, γo).

Since the t-distribution is a member of elliptical class, according to Lemma 4.1, the density

function of X ∼ M
(p)
t (µ,Σ, γo) has a weighting representation where w(t) is the inverse gamma

distribution with
w(t) = 1

Γ( γo2 )

(γot
2

) γo
2 e−

γot
2 t−1, t ∈ R+

and

κ(h) = E(t−h) =
∫ (

1
h

)k
w(t)dt =

(γo
2

)h(Γ( γo2 −h)
Γ( γo2 )

) (3)

In the following we give the joint density of (X̄,Sx) for a t-distributed random sample.

Theorem 4.2. Let X1, . . . ,Xn be iid observations of size n ≥ 2 from M
(p)
t (µ,Σ, γo), where γo ≥ 1,

µ ∈ Rp and Σ ∈ S(p). Then the joint density of (X̄,Sx) is given by

fX̄,Sx
(x̄, sx) =

Γ
(np+γo

2

)
γ
np
2
o Γ

(γo
2

) (n− 1)
p(n−1)

2 |Σ|−
n
2

π
p
2 Γp

(
n−1

2

)
×|sx|

n−p
2
−1

{
1 +

1

γo

(
tr Σ−1

[
n(x̄− µ)(x̄− µ)T + (n− 1)sx

])}− 1
2

(np+γo)
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Figure 1: Mean vs Variance for n = 10000, µ = 0, σ2 = 10, γo = 5

Proof: Making use of the result of Theorem 4.1 and Eq. (3), we have

fX̄,Sx
(x̄, sx) =

(n− 1)
p(n−1)

2 |Σ|−
n
2

π
p
2 2

np
2 Γp

(
n−1

2

) |sx|n−p−2
2

∫
t
np
2 etr

(
−1

2
tH

)
w(t)dt

=
1

Γ
(γo

2

) (γo
2

) γo
2 (n− 1)

p(n−1)
2 |Σ|−

n
2

π
p
2 2

np
2 Γp

(
n−1

2

) |sx|n−p−2
2
(
2[trH + γo]

−1
)np+γo

2 Γ

(
np+ γo

2

)
,

where H = Σ−1
[
n(x̄− µ)(x̄− µ)T + (n− 1)sx

]
. After simplifications, the result follows.

Corollary 4.2.1. For the special case p = 1 and γo = n−1, the joint density of (X̄, S2
x), according

to the random sample X1, . . . , Xn from t(µ, σ2, γo), where µ ∈ R, σ ∈ R+, and n ≥ 2, after some
simplification, is given by

fX̄,S2
x
(x̄, s2

x) =
(γo

2

)γo √nΓ
(
γo + 1

2

)
√

2πσnΓ2
(
n−1

2

)
×
(
s2
x

) γo
2
−1
[

1

2σ2

(
n(x̄− µ)2 + (n− 1)s2

x + γoσ
2
)]−(γo+ 1

2)
, γo = n− 1 ≥ 1.

5 Illustrations

In this section, we draw samples from a univariate Student’s t-distribution, calculate mean, variance
and correlation for different degrees of freedom, to show the uncorrelation structures.

From Figures 1-2, it can be seen that the sample mean and variance are much scattered as the
degrees of freedom gets larger. In Table 1, the sample correlation coefficient r between sample mean
x̄ and sample variance s2

x of a sample of size n = 10000 observations from t(0, σ2, γo) is tabulated
using a Monte Carlo simulation with 1000 replications. Smaller values of the sample correlation
coefficient between the sample mean and variance is indicative of their uncorrelation.
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Figure 2: Mean vs Variance for n = 10000, µ = 0, σ2 = 10, γo = 10

σ2 γo r r2

1 5 0.0101 0.0001
10 -0.0201 0.0004
15 0.0051 0.0000
100 -0.0350 0.0012
1000 0.0311 0.0009

10 5 -0.0111 0.0001
10 0.0217 0.0004
15 -0.0154 0.0002
100 0.0156 0.0002
1000 -0.0359 0.0012

100 5 0.0113 0.0001
10 -0.0240 0.0005
100 0.0211 0.0004
1000 0.0112 0.0001

Table 1: Sample correlation coefficient between sample mean and sample variance for different
values σ2 and γo.
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