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1. Introduction 
 
The independence of sample mean and variance facilitates the derivation of Student -statistic.t   
The probability density function of  the -statistict was derived by Student (1908) under the 
assumption of the normality of the parent population.  While he used uncorrelation of sample mean 
and variance, it was Fisher (1925) who clearly mentioned that the independence between sample 
mean and variance simplifies the derivation and thus defined the -statistict as we define today. The 
confidence interval for the mean of a normal population with unknown variance, and the test of 
significance of the mean, testing equality of two means and a huge body of statistical methods are 
based on the -statistic.t  
 
Geary (1936) is the first to prove that the sample mean and variance are independent if and only if 
the sample observations are independently, identically and normally distributed. Recently,  
Mukhopadhyay (2005) came up with some examples that shows that the condition of normality is 
not a necessity. However, the sample mean and variance are not generally independent in wider 
class of distributions. Hence it is desirable to know the covariance or correlation between sample 
mean and variance.  
 
It is known that the covariance between sample mean and variance for independently and 
identically distributed random variable is proportional to the third central moment. See for 
example, Kang (1984). Kang and Goldsman (1990) exhibited the uncorrelated behavior of sample 
mean and variance by computer simulation. 
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Recently, Zhang (2007) addressed the issue. Mukhopadhah and Son (2011) derived the covariance 
between sample mean X and variance 2 ( )S X based on correlated and non-identically distributed 
observations in terms of covariance of transformed variables j j jY X µ= −  ( 1, 2, , )j n=  . They 
also have provided insightful examples. 
 
In Section 3, we utilize a general expression (3.1) to derive the covariance between sample mean 
and variance. It has been specialized to some known and new cases. For variables that are 
identically but not independently distributed, we have got a simple expression for covariance 
between sample mean and variance and presented in Corollary 3.2.   Finally, in Section 4, we 
derive a new expression for the covariance between linear and quadratic functions of sample 
observations.   
 
2. Some Preliminaries 
 
Let 1 2, , , nX X X  ( 2,3, )n =   have an arbitrary -dimensionaln  joint distribution. We define the 

sample mean x  and variance 2s  by 
1

i n
ii

nx x=

=
=∑  and 2 2

1
( 1) ( ) ,i n

ii
n s x x=

=
− = −∑   respectively.  The 

sample variance can also be represented by 2 2
1 1 ( ) 1

( 1) ( 1) ,n n n
i i ji i j i

n n s n x x x
= = ≠ =

− = − −∑ ∑ ∑  or, by  

 
2 2

1 ( ) 1
2 ( 1) ( ) .i n j n

i ji j i
n n S X X= =

= ≠ =
− = −∑ ∑        (2.1) 

 
Also for identically distributed observations 1 2, , , nX X X  with common mean ,µ  we denote 

( ),a
a E Xµ′ ≡  the -tha  moment of X  and ( ) ,a

a E Xµ µ≡ − the -tha centered moment of .X order 
Then the mean 1µ′  and variance 2 ( )V Xµ ≡ will be simply denoted by µ  and 2 2

2σ µ µ′= −  
respectively. 
 
 
3.  Covariance Between Sample Mean and Variance: A Simpler Approach 
 
Let 1 2, , , nX X X  ( 2,3, )n =   have an arbitrary -dimensionaln  joint distribution. Let  
 

2( ), ,kij ik jCov X X Xγ  = −    1, 2, , ;i n=  ( ) 1, 2, , .j i n≠ =       (3.1) 
 
Then kijγ can be explicitly written as  
 

2 2 222 ( ) 2 ( ) ( )( ) ( ) ( ) ( )) .( ( )kij k i j kk i k j i ji k jkE XE X X X E X EE XX E XE X X E X X E XXγ − += − + −  
 
The following lemma is obvious. 
 
Lemma 3.1 Let 1 2, , , nX X X  ( 2,3, )n =   be independently and identically distributed. Then 

2
1 1 2,  ( )  ,aCov X X X σ − =   3µ  and 4

4 3µ σ+  for 1, 2,3.a =       (3.2) 
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Theorem 3.1 Let 1 2, , , nX X X  ( 2)n ≥  have an arbitrary -dimensionaln  joint distribution.  
 
a. If the variables are independently but not identically distributed , then  
 

3 3 2 2( ) ( ) ( ) 2 ( ) ,ii i i i ij jiE X E X E X E Xγ σ σ= − − −  1,2, , ;i n=  ( ) 1, 2, , .j i n≠ =        (3.3) 
 
b. If the variables are independently but not identically distributed and  1 ,k n≤ ≤ ( ),k i≠  then the 
following holds: 
 

1 ( ) 1 ( ) 1
2 .n j n n

kij kkji j i j k
γ γ=

= ≠ = ≠ =
=∑ ∑ ∑            (3.4) 

 
c.  If the variables are identically but not independently  distributed and 1 ,k n≤ ≤  then  
 

2
3 21 1231 ( ) 1

2( 1) 2 (1 ) ( 1)( 2) ,n j n
kiji j i

n n nγ µ µ µ ρ σ γ=

= ≠ =
′ ′ = − − − − + − − ∑ ∑            (3.5) 

 
where 123γ is defined in (3.1). 
 
Proof.  Proof of part (a) is straightforward, and part (b) follows from the fact that kX and 

2( )i jX X− are independent when ,k i and j are distinct. 
 
c. Since the variables are identically distributed, we can assume without loss of generality 
that 1k = .  We have  
 

2
11 ( ) 1 1 ( ) 1

,  ( ) .n j n n j n
ij k i ji j i i j i

Cov X X Xγ= =

= ≠ = = ≠ =
 = − ∑ ∑ ∑ ∑                             (3.6) 

 
Expanding the above sum, and by noting that the variables are identically but not independently 
distributed, it is easy to see that 2( 1)n − of its terms are equal to ( )2

1 1 2 112, ( )Cov X X X γ− =  and the 

remaining ( 1)( 2)n n− −  terms are equal to ( )2
1 2 3 123cov , ( )X X X γ− = .  Also, 

3 2 2
112 1 1 2 1 1 1 2( ) ( ) 2 ( ) ( ) ( )E X E X X E X E X E X Xγ  = − − −     which simplifies to 

2
3 21 2 (1 ).µ µ µσ ρ′ ′− − −  This proves (3.5). 

 
Theorem  3.2 Let 1 2, , , nX X X  ( 2,3, )n =   have an arbitrary -dimensionaln  joint distribution. 
Then the covariance between X  and 2S  is given by  
 
a. 2 2

1
( 1) ( ,  ) ,  ( 1) ,n

kk
n n Cov X S Cov X n S

=
 − = − ∑                        (3.7) 

 
where 

2 2 2 2
( ) 1

1,  ( 1) ( ,  ) ( ,  ) , ( ) .n
k k k k i ki k

Cov X n S Cov X X Cov X X Cov X nX
n≠ =

   − = + −   ∑                      (3.8) 
 
b.   2 2 2

1 1 ( ) 1
2 ( 1) ( ,  ) (, ) n n j n

k i jk i j i
n n Cov X S Cov X X X=

= = ≠ =
 − = − ∑ ∑ ∑                                         (3.9) 

 
Proof.   
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a. The expression in (3.7) is obvious. By expanding 2 ,S  we have  
 

2 2 2
1 2

2 2 2
1 2

2 2

22

1,  ( 1) ( ) ( )

1                                ( ) ( ) ( ) ( ) .

k k k

k n k

nX X X

X

Cov X n S E X E X nX
n

E X E E XX E nX
n

X

     − = −     

 − −

+

 

+ +

+ + +






 

 
The above simplifies to (3.8). 
 
 
b. It is easy to see that 2 2

1
( , ) ( , ).n

kk
nCov X S Cov X S

=
=∑  Since the sample variance 2S has the 

representation 2 2
1 ( ) 1

2 ( 1) ( ) ,i n j n
i ji j i

n n S X X= =

= ≠ =
− = −∑ ∑  we have 

 
2 2 2( , ) ( ) ( ) ( ),k k kCo vX S E X S E X E S= −  or,  

 
2 2

1 ( ) 1

1( , ) ,  ( ) .
2 ( 1)

i n j n
k k i ji j i

Cov X S Cov X X X
n n

= =

= ≠ =
 = − − ∑ ∑     (3.10) 

 
Then we have  
 

2 2 2
1 1 ( ) 1

2 ( 1) ( ,  ) ,  ( ) ,n n j n
k i jk i j i

n n Cov X S Cov X X X=

= = ≠ =
 − = − ∑ ∑ ∑     (3.11) 

 
which is equivalent to (3.9). 
 
If 1 2, , , nX X X  are independently distributed, then from (4.8), we have 
 

2 2 21,  ( 1) ( , ) , ( ) .k k k kCov X n S Cov X X Cov X nX
n

   − = −     

 
The following corollary is due to Mukhopaddahay and Sun (2011). An alternative proof is 
presented here. 
 
Corollary  3.1  Let 1 2, , , nX X X  be independently but not identically distributed.  Also let ( )iE X   
and 2 2[ ( )] ,i i iE X E Xσ = −   be the mean and variance of  any ,iX  1, 2, , .i n=   Then  
 

( )

( )( )

2 3 3 2
2 21 1

2
2 1 1

1 3( ,  ) ( ) [ ( )] ( )
( 1)

2                  ( ) ,
( 1)

i n i n
i i i ii i

i n i n
i ii i

nCo vX S E X E X E X
n n n

E X
n n

σ

σ

= =

= =

= =

= =

− = − −  −

−
−

∑ ∑

∑ ∑
     (3.12) 

for 2,3, .n =    
 
Proof. Using (3.4) in (3.9), we have 
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2 2

1 ( ) 1
.( 1) ( ,  )

n n

iij
i j i

n n Cov X S γ
= ≠ =

− =∑ ∑                  (3.13) 

 
Since the variables are independently but not identically distributed, by part (a) of Theorem 3.1, 

we have  3 3 2 2

1 ( ) 1 1 ( ) 1
( ) 2

n n n n

iij i i i i i
i j i i

j
i j

E Xγ ν ν σ ν σ
= ≠ = = ≠ =

 = − − − ∑ ∑ ∑ ∑  where ( ),i iE Xν =  1, 2, , .i n=   

 
The above can be written as  
 

3 3 2 2 2 2

1 ( ) 1 1 1 1 1 ( ) 1 1
( 1) ( ) ( 1) 2 2 .

n n n n n n n n

iij i i i i i i j i i i
i j i i i i i j i i

n E X nγ ν ν σ ν σ ν σ ν σ
= ≠ = = = = = ≠ = =

 
 = − − − − + − +  

 
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

 

The proof is complete by virtue of  2 2 2

1 1 1 ( ) 1 1
.j j

n n n n n

i i i
j i i j i i

iν σ ν σ ν σ
= = = ≠ = =

   = +  
  

∑ ∑ ∑ ∑ ∑   

 
In case 3,n = we have  
 

( ) ( )( )3 3 32 3 3 2
1 1 1

9 ( ,  ) ( ) [ ( )]  ( ) .i i i
i i i ii i i

Co vX S E X E X E X σ= = =

= = =
 = − − ∑ ∑ ∑       

 
 
We remark that Corollary 3.1 matches with Corollary 2.1 of Mukhopadhay and Son (2011) for 

( ),i i iY X E X= −  1, 2, , .i n=    Furthermore, if 1 2, , , nX X X  are independently and normally 
distributed, then   
 

( )23 2( ) ( ) ( ) 3 ,i i i iE X E X E X σ = +   and 

( )( )2 2 2
1 1 1

2 1( ,  ) ( ) ( ) ,
( 1)

i n i n i n
i i i ii i i

Co vX S E X E X
n n n

σ σ= = =

= = =

 = − −  
∑ ∑ ∑  

 
as in Example 2.2 of Mukhopadhay and Son (2011). They demonstrated that the covariance may 
be negative, zero or positive depending on the choices of ( )iE X  and iσ  ( 1, 2,3).i =  
 
Corollary 3.2 Let 1 2, , , nX X X  be identically but not independently distributed. Then  
 

2 2
3 21 1232 ( ,  ) 2[ 2 (1 ) ] ( 2) ,nCov X S nµ µ µ ρ σ γ′ ′= − − − + −      (3.14) 

 
where 2

123 1 2 3,  ( ) .Cov X X Xγ  = −   
 
Proof.  Use (3.5) in (3.9).  
 
Corollary 3.3 Let 1 2, , , nX X X  be independently and  identically distributed. Then 

2
3( , ) / .Cov X S nµ=                  (3.15) 

 
Proof.  In case the variables are independently and identically distributed, then 0ρ = and 

123 0γ = and then from (3.14) we have  2
3( ,  ) .nCov X S µ=  Also by using ( ) ,iE X µ=  2 2

iσ σ= for any 
1,2, , ,i n=   in (3.12), we have 2

3( ,  ) .nCov X S µ=  
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Example 3.1 Let 1 2, , nX X X be independently and identically distributed Bernoulli random 
variables (1, ),B p 0 1.p< <  (Zhang, 2007). 
 
Let 1 2 nY X X X= + + +  so that /X Y n= and 2 ( ) / ( 1).S Y n Y n n= − −  Since ~ ( , ),Y B n p a 
binomial random variable, [ ]2 2( ,  ) , ( ) ,n Cov X S Cov Y Y n Y= −  or, 2

3( ,  ) / ,Cov X S nµ=  where 

3 (1 )(1 2 ),p p pµ = − −  the third central moment of Bernoulli distribution. Clearly, the covariance is 

0 if 1/ 2.p =  For a fixed ,n 2( ,  )Cov X S has the maximum value 3 /(18 )n  when 6 3 3,p = −  or, 
0.21p ≈ and the minimum value 3 /(18 )n− when 6 3 3,p = +  or, 0.79.p ≈  Also 

2lim ( ,  ) 0.
n

Cov X S
→∞

=  

 
For instructional ease, the joint distribution of sample mean and variance for 3n =  is given below: 
 

2( , )x s  (0,0)   (1/ 3,1/ 3)   (2 / 3,1/ 3)  (1,0)  
2( , )f x s   3q  23pq  23p q  3p  

 
One can easily check that X and 2S are uncorrelated if 1/ 2.p =  
 
In general, we remark that if 1 2,  ,  ,  nX X X  are independently and identically distributed, then 

2( , ) 0,Cov X S =  iff  the distribution is symmetric around mean µ and 3 0µ =  where  
3

3 ( ) .E Xµ µ= −  
 
Example 3.2 Let 1 2,  ,  ,  nX X X  be independently and identically distributed observations of size 

2n ≥  from continuous uniform distribution ( , )U α β .  Then the sample mean X  and the variance 
2S  are uncorrelated. 

 
Example 3.3 Let 1 2,  ,  ,  nX X X  be independently and identically distributed observations of size 

2n ≥  from a discrete uniform distribution on the support {1,  2,  , }N .  Then the sample mean X  
and the variance 2S  are uncorrelated. 
 
The following example from Mukhopadhyay and Son (2011) is related to Corollary 3.2 of this 
paper. They solved it without explicitly mentioning Corollary 3.2. 
 
Example 3.4 Let the observations 1 2, , , nX X X  be identically distributed with ~ (0, )nX N Σ

 
where 

1 2( , , , ) ,nX X X X ′= 


 1 ,1( ) ,ij i n j nσ ≤ ≤ ≤ ≤Σ = 2
iiσ σ= and 2 ,ijσ ρσ=  ( )i j≠  and 1,2, , ,j n=   where 

1( 1) 1,n ρ−− − < <  and 4,5, .n =   The observations are not independently distributed unless 
0.ρ =  

 
Obviously, 3 0.µ µ′= =  Then 21 0µ′ =  (see Kotz, Balakrishnan and Johnson, 2000, p. 261) and   

1 2 3( ) 0E X X X =  (see Anderson, 1984, p. 49),  so that   2 2
123 1 2 1 2 32[ ( ) ( ) ]E X X E X X Xγ µσ= − −  

vanishes. Then by (3.14), 2( , ) 0.Cov X S =  
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4. Covariance Between Linear and Quadratic Functions  
 
Let 1 2( , , )nX X X X′ = 


be a vector of n jointly distributed random variables with respective 

means jµ  and variance 2
jσ  ( 1, 2, , ).j n=   Also let 

1

j n
j jj

L b X b X=

=
′= =∑


 and 

1 1

i n j n
ij i ji j

Q X AX a X X= =

= =
′= =∑ ∑
 

 be respectively a linear and a quadratic form of jX where 

[ ]ijA a= is an n n×  symmetric matrix. Our objective is to determine a simple for the covariance 
( , ),Cov L Q using an orthogonal diagonalization of the matrix .A  Indeed, since A is a symmetric 

matrix, there exists an orthogonal matrix C (that is, C C′ is the identity matrix) and a diagonal 
matrix 1 2( , , , )nD diag λ λ λ=   such that C AC D′ =  where 1 2, , , nλ λ λ are the eigenvalues of .A  
 
Theorem 4.1  Let 

1

j n
j jj

L b X b X=

=
′= =∑


 and 
1 1

.i n j n
ij i ji j

Q X AX a X X= =

= =
′= =∑ ∑
 

 Then  

 
2

.1 1
( , ) ( , ),i n j n

j j i ji j
Cov L Q b c Cov Y Yλ= =

= =
′= ∑ ∑
 

           (4.1) 

 
where . jc


is the -thj column of C and .Y C X′=

 
 

 
Proof. Define a vector 1 2( , , )nX X X X′ = 


by .Y C X′=

 
 Then .1

j n
j jj

L b CY b c Y=

=
′ ′= =∑
  

 and 
2

1
( ) ( ) j n

j jj
Q CY A CY Y C ACY Y DY Yλ=

=
′ ′ ′ ′= = = =∑

     
 where . jc


is the -thj column of .C  Then  

 

( )( ) ( ) ( )2 2
. .1 1 1 1

( , ) ,j n j n j n j n
j j j j j j j jj j j j

Co v L Q E b c Y Y E b c Y E Yλ λ= = = =

= = = =
 ′ ′= −  ∑ ∑ ∑ ∑

   
 

 
which can be written as ( ) ( )2 2

.1 1
( , ) ( ) ,i n j n

i j i j i ji j
Co vL Q b c E YY E Y E Yλ= =

= =
 ′= − ∑ ∑

 
which is equivalent 

to (4.1). 
 
Theorem 4.2 Let .Y C X′=  Then  
 

12 2
1

1( , ) ( , ).
( 1)

j n
n jj

Cov X S Cov Y Y
n n

= −

=
=

−
∑          (4.2) 

 
Proof.  Let (1,1, ,1),b′ = 


 [ ]ijA a=  where 1 (1/ ),iia n= −  1, 2, , ,i n=    (1/ ),ija n= −  1, 2, , ,i n=    

( ) 1, 2, , .j i n≠ =    Note that the matrix A  can be written as (1/ )A I n J= −  where J  is a n n×  
matrix with all entries equal to 1. Also let . jc


be the -thj  column of  
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1/ 1(2) 1/ 2(3) 1/ ( 1) 1/

1/ 1(2) 1/ 2(3) 1/ ( 1) 1/
.0 2 / 2(3) 1/ ( 1) 1/

0 0 ( 1) / ( 1) 1/

n n n

n n n
C n n n

n n n n

 − − − −
 

− − − 
 = − − 
 
 
 − − 







    



  

 
It is easy to check that  

1
,j n

jj
L X=

=
=∑  2

1
( )j n

jj
Q X X=

=
= −∑  and .nC C I′ =  Then for 

1, 2, , 1,j n= −  we have . . .( (1/ ) ) ,j j jAc I n J c c= − =
  

 and for ,j n=  we have 

. .( (1/ ) ) 0.n nAc I n J c= − =
  

  
 
The equation . .1 ,j jAc c= ×

 
1, 2, , 1,j n= −  means that . jc


is the eigenvector of the matrix A  

corresponding to the eigen value 1.  Also the equation . .0 ,n nAc c= ×
 

 means that .nc


is the 
eigenvector of the matrix A  corresponding to the eigen value 0. We then have 
 

1

1

0
.

0 0
n n n

n

I
C AC × −

−

 
′ =  ′ 





  

 
Since ,Y C X′=  and ,C C I′ =  we have ( ) .Y Y CX CX X C CX X X′ ′ ′ ′ ′= = =

       
 Also we have nY nX=  

so that 12 2 2 2 2 2
1 1 1

( 1) .i n i n i n
i i n ii i i

n S X nX Y Y Y= = = −

= = =
− = − = − =∑ ∑ ∑   Then  

( )12 2
1

( 1) ( ,  ) ,  .i n
n ii

n nCov X S Cov Y Y= −

=
− = ∑  The proof is thus complete. 
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