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Abstract 

This paper presents a birth-and-death stochastic model for the process of knowledge acquisition in typical university 

courses. In particular, we model the acquisition of statistical knowledge in an introductory statistics class. Because 

concepts in statistics are very much inter-related, students’ acquisition of knowledge and their failure to acquire such 

knowledge is at the heart of their success in Statistics classrooms. We propose the use of the Birth-and-Death 

Stochastic Process to model the acquisition and non-acquisition rate of statistics knowledge. Based on end-of-chapter 

quizzes, we were able to fully characterize the students’ acquisition level of statistics knowledge. And as a validity 

measure, we utilize the probabilities of acquisition and of forgetting to predict students’ achievement on their 

comprehensive final exam scores. The acquisition and forgetting probabilities as a group provides a better predictor 

set than the typical major exams for the course. We found that Birth-and-Death process holds promise for modeling 

the process of students’ learning of statistics. We note that the model may also hold promise in other but similar 

courses. 
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1. Introduction and Literature Review 

Success in university courses, in part, depends on students’ achievement in various interrelated aspects of 

knowledge in a course. Instructor’s effectiveness in imparting knowledge and skill in these courses 

depend on not only having the necessary knowledge and skills but also designing the mode and rate at 

which the subject matter must be imparted to the novice students. However, many university courses 

offered have knowledge and skill units that are developmentally pre-requisite of other more advanced 

units and as such are very much inter-related. 

In particular, Statistics courses have concepts that are very much inter-related with a few exceptions. 

Typically students are expected to master not only the material at hand but also previous material. For 

example, when students learn the estimation chapter, they are expected to have learned the central limit 

theorem to a satisfactory degree. However, to learn the central limit theorem, students need to have 

mastered the following main concepts which are: 

1) descriptive statistics  

2) sampling  

3) sampling replications 

4) rules for limits and  

5) the normal probability distribution. 

Although the first three and the last concepts are typically taught in the same course, the fourth 
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concept is taught in a previous course, namely calculus. In addition, students are also expected to apply 

the following pre-requisite concepts from the same statistics course or from a previous mathematics 

course: 

1) probability rules  

2) rules for continuous probability distribution 

3) basic mathematical ideas for areas under the curve and 

4) mathematical rules for finding inverse of a continuous function. 

Students who successfully acquire all concepts have successfully committed these concepts into their 

long-term memory. However, their success in using these concepts partly relies on their memory system 

reconsolidation (Sara, 2000). As described by Snow and Lohman (1993), incoming visual and auditorial 

stimuli such as in classroom lectures must be received and held long enough in a sensory system, 

segmented or synthesized, and recognized, encoded, or otherwise represented in a memory system so that 

attention can be directed and further cognitive work can be done. Students who fail to acquire the 

knowledge concepts may commit their understanding of concepts into short-term memory only, may not 

consolidate their memory, and thus a forgetting or retention-loss phenomenon may occur as pointed out 

by many researchers (Dudai, 2004; Maren, 1999; Lee, Everitt, & Thomas, 2004). According to Wixted 

and Carpenter (2007), the time-to-forgetting can best be modeled by a decaying power function. That is, 

without effort to reinforce knowledge consolidation, memory of learning units may decay quite rapidly. 

Jaber and Bonney (1997) discussed several models that incorporate forgetting in learning curves to 

produce industrial products. These learning curves were studied as a function of time from initial 

production and from momentary stoppages of production lines. Jaber and Bonney’s work did not look at 

the effects of length of breaks on the learning curves. 

Globberson et. al (1989) studied the effects of breaks on forgetting when subjects were performing 

repetitive tasks of data-entering 16 forms. The break length between two data entry sessions varied from 1 

to 82 days. Apparently, the longer the production times to produce a product, the more the productivity. 

However, when the stoppage from producing a product is longer, the forgetting becomes greater. 

As acquisition of statistics knowledge concepts also require repetitive tasks to consolidate 

understanding and consolidate memory systems of concepts, work by Globberson et, al (1989) and Jaber 

and Bonney (1997) appear to be quite important to shed light on statistics learning. Snow and Lohman 

(1993) also stressed that an important hypothesis in accumulating information to build a novel train of 

thought has been the characteristics of the initial perception-memory-attention system, and the skills 

involved in working this initial system which are fundamentally important in conditioning the success of 

further cognitive processing. Groen and Parkman (1972) observed that as computational skills are over-

learned, response times become quite rapid. They observed that older children and adults for whom 

computation has become automatic respond rapidly to most types of computational problems. 

Recently, some researchers (Janoos, Brown, Morocz, and Wells III, 2013) have used a state-space 

analysis of working memory. The model used by Janoos et. al (2013) Requires understanding of the 

neurocognitive processes underlying the working memory of impairment in schizophrenic subjects. 

As for our study, we require the understanding of the students’ learning process as they acquire new 

lesson units and as such our proposed model in this paper will concentrate more on how students 

naturally progress through their statistics course. Teaching Statistics can be quite a challenge when 

students do not learn the basic pre-requisite knowledge from pre-requisite courses or from previous key 

building-block chapters. It seems that a good assessment and learning system needs to measure evidence 

of student mastery of these prerequisite knowledge concepts. But, how and when do we measure these 

evidences? Also as important is how do we use the evidence? 

In this paper, we suggest using a discrete-time homogeneous Birth-and-Death stochastic process 

model to measure the time series evidence of students’ pre-requisite knowledge. The typical structure of a 

statistics course often introduces concepts sequentially and short quizzes can be given at the end of every 

complete discussion of concept. This opens the potential to apply the Birth-and-Death stochastic process 
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model.  

2. Method 

Several important terminologies from the Birth and Death Stochastic Process need to be understood in 

terms of this Statistics learning process. In this paper, we call the successful acquisition of a concept as 

the birth of a memory consolidation of the concept while forgetting a concept is termed the death, decay, 

or disintegration of the memory of a concept. Meanwhile, failing to acquire a concept is the non-birth of 

a learner’s memory for the concept. Since statistical concepts are taught sequentially, a student can 

accumulate mastery of these concepts in the following ways; 

a) He/she can sequentially and successfully acquire all n concepts, which means he/she has passed the 

course successfully, where n is the total number of concepts in the course as presented in learning 

units/chapters. 

b) He/she can acquire a subset of k concepts (where 1 < k < n ) 

c) He/she can acquire some concepts but forget them in which case he/she is left with a subset of k 

concepts 

d) He/she does not acquire any concept in which case he/she has k=0 understanding of concepts. 

e) He/she does not acquire any more concepts after acquiring k concepts. 

The following diagram shows these possible transitions for the accumulation of n concepts in a typical 

n-unit statistical course. 

 

 

Fig. 1. A Discrete time homogeneous Birth-and-Death Stochastic Process Model of Statistics Learning 

Nomenclature  

pk,k+1 one-step transition probability from state k to the (k+1)
th

 concept acquisition 

pk,k-1 one-step transition probability from state k to the (k-1)
th

 concept death/decay/disintegration 

pk,k transition probability from state k to the k
th

 concept retention 

pk  birth rate in state k to move to the (k+1)
th

 concept acquisition  

qk knowledge death/decay rate in the k
th

 state to reduce to the (k-1)
th

 state. 

2.1. Assumptions of the model and their implications 

The model of the memory consolidation system with state space Z={0,1,2,....,n} where n <  is a 

Birth-and-Death process if from any memory consolidation state k in Z only transition to k-1 or k+1 is 

possible, provided that k-1 and k+1 are also respectively in Z.  

The transition probabilities for each unit of time of the Birth-and-Death process have the following 

properties: 
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a) transition probability from state k to state k+1= pk,k+1 = pk 

b) transition probability from state k to state k -1 = pk,k-1 = qk  

c) transition probability from state k to state k = pk,k = 1- (pk + qk)  

d) j-step transition probability from state k to state k - j = pk,k-j  =  0 (where j >1) 

e) j-step transition probability from state k to state k + j = pk,k+j  =  0  (where j >1) 

f) q0 = 0 

That is, the implication of condition (f) on the transition probability is that there is no further 

death/decay beyond those n-unit concepts in the typical statistics course. Conditions (a) through (e) shows 

the sequential nature of the knowledge acquisition process in the typical n-unit course. That is, students 

need to cumulatively acquire each unit successfully in order to successfully acquire the next concept. 

Condition b above describes the death/decay of the knowledge in the memory system. Condition c 

describes the rate of non-acquisition and non-decay of knowledge concepts in the memory system. This 

probability describes the chance for a student to retain a knowledge concept in his/her memory system 

without advancing to the next memory state or reverting to the previous state. As for conditions d and e, 

the chance for acquiring more than 1 knowledge concepts in one time and the chance for losing/forgetting 

more than 1 knowledge concept is zero. 

In addition, to ensure that a Birth-and-Death Process is irreducible, we need to supplement the listed 

assumptions above with the following conditions: 

a) pk  >  0  for  k = 0,1,...., n-1 and 

b) qk > 0 for  k = 1,...., n. 

2.2. Measurement of the transition probabilities 

After acquiring the k
th

 concept, acquisition of new concept, retention of the k
th

 material and forgetting 

the k
th

 material are mutually exclusive categories in our model. For the purpose of measuring the 

transition probabilities, we define the following: 

a)  pk = pk,k+1  = proportion of correct scores on the k + 1
th

  quiz and  

b) 1– pk = Pr (m = k  or  k – 1 | j = k) = proportion of incorrect scores on the k + 1
th

 quiz. 

In particular, 1– pk is the probability of non-acquisition of the k + 1
th

 concept. At this point, this 

probability is a combination of both the retention probability Pr (m = k  | j = k), and the forgetting/decay 

probability Pr (m = k – 1 | j = k). 

To separately measure which part of this total probability is related to retention of the k
th

 concept and 

which part is due to forgetting /decay of this k
th

 concept, we define the following: 

a) wk = proportion of a linear combination of absence and complement of the homework score on the k
th

 

unit as below 
th th

th th

1 attendance on the  unit 2 Student score on the  unit homework
1 1 .

3 3Total classes on the  unit Max possible score on the  unit homework

k k

k k

   
        

   

 

The rationale is that since forgetting means the student have obtained the material but then forget due to 

not reinforcing their knowledge, the first part is related to their forgetting after acquiring knowledge 

from not attending the classes while the second part is related to their forgetting due to not personally 

investing time in doing the homework. Also, although students may come to class, the more they don’t 

personally do their work, the more they’ll forget. Thus the second part, which deals with forgetting due 

to not doing homework, is weighted 2 times more than not keeping regular attendance. 

b)  Pr (m = k – 1 | j = k) = qk = wk
 
(1– pk) = probability of forgetting the k

th
 concept after acquiring these 

concepts and 

c)  Pr (m = k  | j = k) = 1- qk - pk = probability of retaining the k
th

 statistics concept after acquiring these 

concepts. 
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2.3. Data and Validation of model 

The data for the estimation of the model transition probabilities come from a STAT211 Business 

Statistics I course at King Fahd University of Petroleum and Minerals in the Fall semester of 2011. There 

were 90 students who took 7 end-of-chapter quizzes for the course.  

For the purpose of validation of the model, we calculated the individual probabilities of knowledge 

acquisition, individual probabilities of knowledge failures, joint probability of knowledge acquisition and 

the joint probability of knowledge decay for each student. To examine the predictive power of the 

proposed Birth-and Death process model, we then use these probabilities to predict the students’ 

comprehensive final exam scores. In particular, use the following predictor variables to explain the 

variation in the comprehensive final exam scores: 

1) Major Exam 1 score 

2) Major Exam 2 score 

3) The sum of acquisition probabilities (denoted as “sum p”) 

4) The sum of forgetting probabilities (denoted as “sum q”) 

5) The individual acquisition probabilities 

6) The individual forgetting/decay probabilities  

7) The product of acquisition probabilities (denoted as “product p”) 

8) The product of forgetting probabilities (denoted as “product q”) 

9) The product of retention probabilities (denoted as “product r”) 

With the above predictors, the general estimated regression model is given below: 


0 1 1 2 2 p pY b b X b X b X     . 

For the purpose of benchmarking, we shall compare the performance of the elements of the Birth-and-

Death Stochastic Process model against the performance of the regression model with major 1 and major 

2 exam scores. Note that we do not include the retention probabilities in the regression model because by 

the Birth and Death process model, they are linearly dependent on the sum of the acquisition and 

forgetting probabilities from state k. 

3. Results 

Results of the validation by regression model are summarized in this section. Table 1 provides the 

performance of the predictor variables in explaining the comprehensive final exam scores. Table 2 further 

investigates which elements of the Birth-and-Death Process model are good predictors of the 

comprehensive final exam scores. 

Table 1 presents the predictors of comprehensive final exam scores and the characteristics of each 

regression model such as the numerator and denominator degrees of freedom (df), the percentage of 

variation explained (R
2
), the R

2 
adjusted for the number of predictors (R

2
 adj), the regression standard 

error of estimate (s), the model F-test ratio, and the observed significance level, p-value (P). The best 

regression model would have a significant model F-test ratio where the p-value would be less than  = 

0.05 significance level, the smallest standard error of estimate (s), the largest percentage of variation 

explained (R
2
) and the largest adjusted R

2
.  

As pointed out earlier, the model in the first row which contains both the first and second major exam 

score serves as a benchmark to compare other models. This is mainly because in the STAT211 course, 

these two exams make up a summative performance measure of a number of concepts in the course. Also, 
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the majority of the STAT211 grade, (exactly 80%) comprises mainly of the first, second exam, and the 

comprehensive final exam in the ratio of 1:1:2. As such, the regression model with major exam scores as 

predictors appears the best logical reference to compare other competing models against. From the first 

row of Table 1, major 1 and major 2 exams together explain 29.1% of the variation in the final exam 

performance (R
2
). Although this model is significant, this R

2
 is less when compared to the straight sum of 

the state probabilities on the second row which R
2
 implies that it explains 32.1%. One thing to note is that 

the major exam scores are a summative measure of the students’ performance over several learning units 

whereas the probabilities as measured by end-of-chapter quizzes are the measures of success at the end of 

each unit. 

Table 1. Comparison of Predictors in Explaining Final Exam Performance 

Predictors df1 df2 R2 R2 adj s F P 

Exam 1 and Exam 2 2 87 29.1 27.4 5.867 17.83 0.000 

Sum p 1 88 32.1 31.4 5.707 41.65 0.000 

Sum q 1 88 12.8 11.8 6.469 12.91 0.001 

p0, p1, p2, p3, p4, p5, p6 7 82 36.4 31 5.722 6.71 0.000 

p's, and  q1, q2, q3, q4, q5, q6, q7 14 75 43.5 32.9 5.641 4.12 0.000 

p's , q's, product p, product q, product r 17 72 45.5 32.7 5.652 3.54 0.000 

 

When we allow the state probabilities to be least-square weighted such as they are on the fourth line of 

the table, the R
2
 improves to 36.4%. Adding the state probabilities for forgetting, as shown on the fifth 

row, improves this explanatory power to 43.5%. If we use the state probabilities as well as their products, 

the variation of the final exam explained is increased to 45.5%. 

Table 2 further investigates which elements of the Birth-and-Death Process model are good predictors 

of the comprehensive final exam scores. When the state probabilities and their products are allowed to be 

inputted together into the model and step-by-step chosen into the regression model, a subset of the state 

probabilities are significant and quite important to be included.  

Table 2. Stepwise Regression Results of Predictors in Explaining Final Exam Performance 

Predictors df1 df2 R2 R2 adj s F P 

sum p,  q7 2 87 35.1 33.6 5.612 23.6 0.000 

sum p,  q7,  q4  3 86 37.7 35.5 5.530 17.4 0.000 

sum p,  q7,  q4 ,  p0 4 85 41.1 38.3 5.409 14.8 0.000 

 

From row 1 of Table 2 in particular, the sum of the acquisition probabilities and probability of 

forgetting for the 7
th

 unit appear as important predictors of the regression model. The percentage of 

variation in the comprehensive final exam explained by this model is 35.1% which is higher than the 

benchmark R
2
 of 29.1% when the two major exams were the predictors. The standard error of estimate (s) 

is also lower. The model is improved further if we include the probability of forgetting for the 4
th

 unit 

where the R
2
 is 37.7%, adjusted R

2
 is 35.5%, and s is 5.530.  
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When we include further the acquisition probability for the first unit, the R
2
 increases to 41.1%. In 

addition, we obtain the smallest standard error of estimate (s) and obtain the largest adjusted R
2
 of 38.3% 

which is far superior to the model with the two major exams. 

4. Conclusion and Limitations of the Study 

The final regression model, as presented in the last row of Table 2, highlights the importance of the 

acquisition probabilities for statistics learning unit. The model also highlights the forgetting probabilities 

of the 7
th

 unit which discusses the sampling distributions and the 4
th

 unit which discusses probability. In 

addition, the model also puts importance in the acquisition probability of the first unit which discuss the 

data types, collection, and measurement. 

It appears that the Birth-and-Death process model holds some promise in modeling the statistics 

learning process. When broken into the individual learning units, modeling the mastery of new units, 

retention of the current units, and forgetting the current units play some role in predicting students’ 

success on the comprehensive course final exam. 

Since this is the first research on the application of the Birth-and-Death Stochastic Process to the 

learning of statistics, more work on applying this model to life data is needed. The validation results 

obtained in this paper may be different if different data set were obtained. 

The approach we took in this paper can be applicable to student’s learning process in other courses as 

well. However, work on mathematics learning or learning in other courses similar to the statistics learning 

environment still needs to be done. 
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