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ABSTRACT

We present here some algebraic properties of PLRD functions that can be used to test
whether a given bivariate density has the PLRD property with little or no differentiation.

1. Introduction

A distribution of a pair of random variables (X1, X2) is positively likelihood ratio
dependent (PLRD) if its density function f satisfies

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1) (1)

whenever x1 > x2 and y1 > y2. This is referred to as the TP2 property in Karlin [4]
(see also Tong [2, pp. 19-20] and Olkin and Liu [4]). As stated in [2], it appears to
be the strongest condition for studying the positive dependence of random variables
X1, X2. Our purpose here is to present several properties that can be used to test
whether a pair of random variables satisfies PLRD. For the sake of generality, and for
brevity of notation, we will say that a function f of two variables (f not necessarily a
density) is PLRD when it satisfies (1). Another reason why we chose not to restrict
our discussion to density functions in our definition of PLRD’s is this: while some
density functions are easily verified to be PLRD − see for example Olkin and Riu
[4]− this is clearly not the case for others. To deal with such densities, one can use
the criterion below (or its logarithmic version), but computing partial derivatives for
complicated functions and establishing the inequality (2) below for these derivatives
may prove cumbersome and time-consuming. The idea we wish to present here is
to decompose a given function f into PLRD functions (keeping in mind of course
that these components need not be density functions) and then use Propositions 3
and 4 below to establish that f is PLRD. The properties themselves can be proved
either directly from the PLRD definition or by a straightforward application of the
following criterion.
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2. A PLRD Criterion

A version of this criterion (using logarithms) already appears in Holland and Wang
[2]. We include it here for completeness. Let f be a positive function such that
∂f(x, y)

∂x
,
∂f(x, y)

∂y
, and

∂2f(x, y)

∂x∂y
are continuous and satisfy the inequality

f(x, y)
∂2f(x, y)

∂x∂y
≥ ∂f(x, y)

∂x

∂f(x, y)

∂y
, (2)

and consider the function h(y) =
∂f(x, y)/∂x

f(x, y)
(where x is assumed to be constant).

Then the derivative h′(y) is nonnegative, and so h is an increasing function (using
the basic fact that a differentiable function (of a single variable) is increasing if
and only if its derivative is nonnegative). Since h(y1) ≥ h(y2) whenever y1 > y2,

we obtain f(x, y2)
∂f(x, y1)

∂x
≥ f(x, y1)

∂f(x, y2)

∂x
for all x. This means the function

g(x) :=
f(x, y1)

f(x, y2)
is increasing whenever y1 > y2, that is, g(x1) =

f(x1, y1)

f(x1, y2)
≥ g(x2) =

f(x2, y1)

f(x2, y2)
whenever x1 > x2 and y1 > y2. Hence f is PLRD. Conversely, it is clear,

by reversing the steps above, that if f is PLRD then it satisfies (2). Thus we have,

Proposition 1. (See [2].) Let f be a positive function such that
∂f(x, y)

∂x
,
∂f(x, y)

∂y
,

and
∂2f(x, y)

∂x∂y
are continuous. Then f is PLRD if and only if f(x, y)

∂2f(x, y)

∂x∂y
≥

∂f(x, y)

∂x

∂f(x, y)

∂y
, for all x, y. In particular, if f is PLRD and

∂f(x, y)

∂x

∂f(x, y)

∂y
≥

0, then
∂2f(x, y)

∂x∂y
≥ 0. �

Note that an alternative way of stating Proposition 1 is to write f(x, y) = eg(x,y) and

observe that f(x, y)
∂2f(x, y)

∂x∂y
≥ ∂f(x, y)

∂x

∂f(x, y)

∂y
is equivalent to having

∂2g(x, y)

∂x∂y
≥

0. In other words, eg(x,y) is PLRD precisely when
∂2g(x, y)

∂x∂y
≥ 0. This suggests a close

connection of the PLRD property to convexity (a function g of one variable is convex
if g(λx1 + (1 − λ)x2) ≤ λg(x1) + (1 − λ)g(x2) whenever 0 ≤ λ ≤ 1). Indeed, using
Proposition 1 and straightforward algebraic manipulations, one can show

Proposition 2. (i) Let f be a function of two variables with continuous second-order
partial derivatives. If ef(x,y) is PLRD then f(x, x) is convex.
(ii) A twice differentiable function g is convex if and only if eg(x+y) is PLRD. �
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2. Algebraic Properties

In the next propositions, we give several properties of PLRD functions. They can
be used, in particular, to construct new PLRDs from old ones, and to check whether
a given bivariate function is PLRD with minimal recourse to partial derivatives.
To present a more coherent set of properties, let us call f NLRD (for negatively
likelihood ratio dependent) if

f(x1, y1)f(x2, y2) ≤ f(x1, y2)f(x2, y1) (3)

whenever x1 > x2 and y1 > y2. Such functions are called RR2 (for reverse rule of
order 2) in [domma, 2009]. Clearly, a nonzero function f is PLRD if and only if 1/f

is NLRD. We immediately have the following.

Properties

(P1) g(x, y) is PLRD (resp. NLRD) if and only if g(y, x) is PLRD (resp. NLRD).

(P2) g(x, y)h(x, y) is PLRD (resp. NLRD) whenever both g and h are PLRD (resp.
NLRD). In particular, if u and v are functions of single variables then u(x)v(y) is
both PLRD and NLRD.

(P3) If g is PLRD and u and v are both increasing or both decreasing functions
of single variables, then g(u(x), v(y)) is PLRD. In particular, u(x) − v(y) and
u(x)v(y) + C are PLRD whenever C is a nonnegative constant and u and v are
both increasing or both decreasing.

(P4) If g is PLRD, and if u (resp. v) is an increasing (resp. decreasing) function
of a single variable, then g(u(x), v(y)) is NLRD. In particular, u(x) + v(y) and
u(x)v(y) − C are NLRD whenever C is a nonnegative constant and u and v are
both increasing or both decreasing functions of single variables.

(P5) If g is PLRD (resp. NLRD) then g + C is PLRD (resp. NLRD) whenever C

is a constant with C
∂2g(x, y)

∂x∂y
≥ 0 (resp. ≤ 0).

(P6) (g(x, y))a is PLRD if g is PLRD and a ≥ 0. �

Less obvious perhaps is the next proposition. (Note that since a number of densi-
ties involve hypergeometric functions, this result can be quite useful when checking
whether they are PLRD.)
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Proposition 3. Let f be a positive PLRD such that
∂f(x, y)

∂x
,
∂f(x, y)

∂y
, and

∂2f(x, y)

∂x∂y
are continuous and

∂f(x, y)

∂x
,
∂f(x, y)

∂y
have the same sign. Then, for

any power series g(t) =
∞∑
n=0

ant
n with nonnegative coeffi cients, g(f(x, y)) is PLRD

whenever f(x, y) is in the interval of convergence of g.

Proof. We first show that the proposition is true when g is a polynomial with non-
negative coeffi cients. For that we use induction on the degree of g. If g is constant,
then, clearly, g(f(x, y)) is PLRD. Suppose now that the proposition is true for all
polynomials of degree n (and with nonnegative coeffi cients), and that g has degree
n+1. Then, for some nonnegative constant c and some polynomial h of degree n and
with nonnegative coeffi cients, g(t) = c+ th(t). By (P2) and the induction hypothe-

sis, f(x, y)h(f(x, y)) is PLRD. Since
∂f(x, y)h(f(x, y))

∂x
and

∂f(x, y)h(f(x, y))

∂y
are

easily seen to be nonnegative (recall that all coeffi cients of f are nonnegative and
∂f(x, y)

∂x

∂f(x, y)

∂y
≥ 0), we infer from Proposition 1 that

∂2f(x, y)h(f(x, y))

∂x∂y
≥ 0.

Hence g(f(x, y)) = c+ f(x, y)h(f(x, y)) is PLRD by (P5), as required.

Finally, if g(t) =
∞∑
n=0

ant
n is a power series with nonnegative coeffi cients, then

g(f(x, y)) = lim
n→∞

γn(x, y), where the polynomials γn(x, y) =
n∑
k=0

ak(f(x, y))k are

the partial sums. By the first part, each γn(x, y) is PLRD and hence satisfies (1).
This inequality is obviously preserved when n→∞, and the proof is complete. �

For stochastic rearrangement inequalities, an excellent reference is, for example, [1].
The proof of the result below is given here to illustrate an application of the PLRD
property.

Proposition 4. Let f be a positive PLRD. Then, for any permutation σ of
{1, 2, ..., n} and decreasing sequences x1 > x2 > · · · > xn, y1 > y2 > · · · > yn,

we have
n∏
i=1

f(xi, yi) ≥
n∏
i=1

f(xi, yσ(i)).

Proof. The statement is clearly true for n = 1. Suppose it is true for n = k,

let σ be a permutation of {1, 2, ..., k, k + 1}, and let x1 > x2 > · · · > xk+1,

y1 > y2 > · · · > yk+1. If σ(k + 1) = k + 1, then the restriction of σ to {1, 2, ..., n}
is a permutation, and the induction hypothesis implies the required inequality
k+1∏
i=1

f(xi, yi) ≥ f(xk+1, yk+1)
k∏
i=1

f(xi, yσ(i)).
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Suppose now that σ(k+1) = j ≤ k. Then, with the convention that empty products
are equal to 1, we can apply the induction hypothesis on the sequences x1 > x2 >

· · · > xn, y1 > y2 > · · · > yj−1 > yj+1 > · · · > yk+1 to obtain

k+1∏
i=1

f(xi, yσ(i)) ≤ f(xk+1, yσ(k+1))
∏

i∈{1,...,j−1}

f(xi, yi)

k∏
i=j

f(xi, yi+1)

≤ f(xk, yk+1)f(xk+1, yσ(k+1))
∏

i∈{1,...,j−1}

f(xi, yi)
k−1∏
i=j

f(xi, yi+1)

≤ f(xk, yk+1)f(xk+1, yσ(k+1))
∏

i∈{1,...,j−1}

f(xi, yi)
k−1∏
i=j

f(xi, yi+1)

≤ f(xk, yσ(k+1))f(xk+1, yk+1)
∏

i∈{1,...,j−1}

f(xi, yi)
k−1∏
i=j

f(xi, yi+1),

where the last inequality follows from the PLRD property of f applied to the se-
quences xk > xk+1, yσ(k+1) > yk+1. We thus obtain,

k+1∏
i=1

f(xi, yσ(i)) ≤ f(xk, yσ(k+1))
∏

i∈{1,...,j−1,k+1}

f(xi, yi)
k−1∏
i=j

f(xi, yi+1).

Continuing with this "exchange" argument, we deduce that

k+1∏
i=1

f(xi, yσ(i)) ≤ f(xj+1, yσ(k+1))f(xj, yj+1)
∏

i∈{1,...,j−1,j+2,...,k+1}

f(xi, yi)

≤ f(xj, yσ(k+1))f(xj+1, yj+1))
∏

i∈{1,...,j−1,j+2,...,k+1}

f(xi, yi) ≤
k+1∏
i=1

f(xi, yi),

as required. �

4. Examples

We now present a number of applications to illustrate the usefulness of our results.
The first one, a variant of Hardy, Littlewood and Polya’s rearrangement inequality,
is given to show that the PLRD property can be used directly to derive certain
inequalities.
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4.1. For all x1 > x2 > · · · > xn > 0, y1 > y2 > · · · > yn > 0, and any permutation
σ of {1, 2, ..., n} we have

n∏
i=1

ln(1 + xiyi) ≥
n∏
i=1

ln(1 + xiyσ(i)).

To see this, let f(x, y) =
1

ln(1 + xy)
, so that f is positive and has continuous

derivatives of all orders on the region R = (0,∞) × (0,∞). As is easily checked,

f(x, y)
∂2f(x, y)

∂x∂y
≥ ∂f(x, y)

∂x

∂f(x, y)

∂y
on R, so f is PLRD and the inequality follows

from Propositions 1 and 5. (Alternatively, we could start with the function g(x, y) =

ln(1 + xy) and show that g(x, y)
∂2g(x, y)

∂x∂y
≤ ∂g(x, y)

∂x

∂g(x, y)

∂y
.)

4.2. The following density function appears in Joarder [3].

f(x, y) =
(xy)m/2−1 (1− ρ2)−m/2

2mΓ2(m/2)
exp

(
− x+ y

2− 2ρ2

)
0F1

(
m

2
;

ρ2xy

(2− 2ρ2)2

)
,

where x > 0, y > 0, 0 < ρ < 1, m ≥ 1, and 0F1(b; z) =
∑
k≥0

Γ(b)

Γ(b+ k)

zk

k!
. It is the

density of random variables X and Y that have a correlated bivariate chi-square
distribution, each with m degrees of freedom. Clearly, f(x, y) = Ah(x)h(y)g(t),

where A =
(1− ρ2)−m/2
2mΓ2(m/2)

, h(x) = xm/2−1e
− x
2−2ρ2 , and g(t) =

∑
k≥0

Γ(m/2)

Γ(m/2 + k)

tk

k!
. By

(P1), (P4) and Proposition 3 (since all the coeffi cients of the series are positive), we
obtain that f is PLRD.

4.3. McKay’s bivariate gamma distribution (McKay [5]) has density

f(x, y) =
ca+b

Γ(a)Γ(b)
xa−1(y − x)b−1e−cy,

where y > x > 0, a, b, c > 0. Using (P1), (P2), (P4) and (P5), we obtain that f is
PLRD when b ≥ 1.

4.4. Consider the bivariate Rodriguez-Burr III density (see p.3 of [8])

f(x, y) = βλγδθx−θ−1y−δ−1(1 + αλγx−θy−δ + λx−θ + γy−δ)−β−2×
{(β + 1)(1 + αλx−θ)(1 + αγy−δ)− α

(
1 + αλγx−θy−δ + λx−θ + γy−δ

)
}.

where β, λ, γ, δ, θ are all positive, 0 ≤ α ≤ β + 1, and x, y are nonnegative. As
indicated in [8], Holland-Wang criterion can be used to show that f is PLRD for
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α < 1. However, without much effort (and with no differentiation), this can be
deduced from the properties of PLRD functions as follows. First, notice that if
g = βλγδθx−θ−1y−δ−1, h = 1 + αλγx−θy−δ + λx−θ + γy−δ, u = 1 + αλx−θ, and
v = 1 + αγy−δ, then u, v are decreasing, αh = uv + α− 1, and

f(x, y) = gh−β−2{(β + 1)(1 + α(h− 1))− αh}
= gh−β−2(βuv + 1− α).

If α = 0, then f(x, y) = (β + 1)gh−β−2 and h = 1 + λx−θ + γy−δ. Now 1 + λx−θ and
γy−δ are both decreasing and NLRD by (P2), so h is NLRD by (P4) and h−β−2 is
PLRD. Hence, as g is PLRD (and NLRD) by (P2), we get f is PLRD. For 0 < α < 1,

h =
uv + α− 1

α
, so h is NLRD by (P4) and hence h−β−2 is PLRD, while βuv+1−α

is PLRD by (P3). Thus, by (P2), f is PLRD.
Let us note that an alternative way to show f is PLRD when α = 0 is to denote
each f by fα (considering α as an indexing parameter) and concluding that f0 is
PLRD from the fact that f0 = lim

α→0+
fα and that each fα (0 < α < 1) is PLRD. �
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