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SUMMARY: Ranked set sampling schemes were originally proposed to increase 

efficiency in estimation. On the other hand, group sequential methods provide 

substantial savings in sample and enable us to make decisions as early as possible. In 

this manuscript, we intend to combine the benefits of the two methodologies. We 

propose group sequential tests for one and two population means under ranked set 

sampling. We compare the power, average sample sizes and type I errors of the 

proposed tests to those of group sequential tests based on simple random sampling 

schemes. We illustrate the utility of the method by using data from HIV trial.  
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1. Introduction 

Group sequential testing methods are often used in medical clinical trials in order to 

attain ethical, economical and administrative benefits. The most important benefit is 

the ethical one wherein, for instance, decisions regarding which of the two 

competitive treatments better can be made early and therefore, the patients can be 

duly removed from the inferior treatment arm. In the group sequential testing 

methodology, groups of observations are taken at each interim analysis (each time the 

data are examined for testing the hypotheses of interest) and, usually, a fixed sample 

statistic is computed at each interim analysis using the cumulative sample collected 

thus far. The first group sequential testing method was formalized by Pocock (1977) 

who dealt with the two-sample independent normal data and a composite alternative 

hypothesis about the mean difference. Pocock used equal group sizes and constant 

boundaries to satisfy pre-specified type I & II error probabilities. Later, O’Brien and 
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Fleming (1979) re-considered the same problem with square root boundaries and this 

method has the advantage of not rushing to reject the null hypothesis at early stages 

when the number of collected observations is small. The condition of equal group 

sizes was later removed by Lan and DeMets (1983) who introduced the so-called α -

spending function to build the boundaries. Recently, sequential and group sequential 

methods have been extended in many directions and applied in various scientific areas 

of research; see for example Hussein and Carriere (2005) and Cui et al. (2009).  

On the other hand, the sampling method coined as ranked set sampling (RSS) is 

an often more efficient method in many estimation and/or testing setups than the usual 

simple random sampling (SRS). In the simplest RSS procedure as suggested by 

McIntyre (1952), the investigator selects a SRS of k k×  units from the population 

and randomly divides them into k subsets. Each subset is then ordered with respect to 

the quantity of interest without measuring it. This can be done by various ways such 

as by visual inspection or through ordering of concomitant variable. From the first set, 

the first order statistic is selected (i.e., the unit with the smallest measurement), 

whereas from the second subset the second order statistic is selected and so forth. 

Thus one will ultimately obtain a sample of size k and the entire procedure is repeated 

m times (called m cycles). Thus the final sample size has mk  observations. In the 

context of hypothesis testing, Abu-Dayyeh and Muttlak (1996) and Muttlak and Abu-

Dayyeh (1998) discussed testing under RSS for the mean of a normal and scale 

parameters of the exponential distribution. Takahasi and Wakimoto (1968) supplied 

the necessary mathematical theory. Dell and Clutter (1972) studied the case in which 

the ranking may not be perfect:  i.e. there are errors in ranking the unit with respect to 

variable of interest. Recently, interest has been shown in the RSS by a number of 

investigators, for example Ozturk and Balakrishnan (2009) and Chen (2007). 

The RSS method maybe used as an efficient way of incorporating auxiliary 

information at the design stage of a clinical trial. In many medical clinical trials, the 

variable of interest ( X ) has often concomitant (auxiliary) variables that are 

reasonably correlated with endpoint of interest and which can be used to rank patients 

prior to randomization. This is, in particular, helpful when measuring the variable of 

interest is difficult or costly, while visual inspection or measuring the auxiliary 

variable is cost-free or much cheaper. Also, many clinics receive patients in batches 

and it is actually feasible to divide potential patients into ranked subsets prior to 

randomization. Incorporating auxiliary information at the design stage of a clinical 
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trial has been attempted by Lagakos (1977). For instance, baseline CD4 counts may 

be useful auxiliary information in AIDS clinical trials. In clinical trials comparing two 

chemotherapies for the remission from leukemia, Karnofsky score or even 

demographic variables such as age or gender may serve as auxiliary variables.  

This manuscript has, therefore, the objective of combining the benefits of group 

sequential methods and those of the RSS when testing hypothesis about the means of 

one and two populations. The use of RSS scheme would increase efficiency and 

hence, would result in procedures that stop much earlier than the usual group 

sequential procedures based on simple random samples. The rest of the manuscript is 

organized as follows. In Sections 2 and 3, we propose general RSS group sequential 

methods for one- and two-sample testing of hypothesis and we show that the score 

test statistics are asymptotically equivalent to discrete standard Brownian motion 

processes. In these sections, we illustrate how the efficiency of group sequential 

methods can, at times, be doubled by the use of RSS schemes. In Section 3, we give 

Monte Carlo simulations to compare the performance of the proposed methods and 

those of the usual SRS-based group sequential methods. In Section 4, we illustrate the 

utility of the new procedures by using data from a controlled clinical trial that 

compared two treatments for HIV infected persons (Hammer et. al. (1997)).  

2. One-sample RSS Group Sequential Methods 

2.1. The proposed method 

In general, there are several types of ranked set sampling (RSS) schemes in the 

literature. However, in this manuscript we use the balanced RSS method, see 

McIntyre (1952). Suppose that we are interesting in group sequential testing of  

 

 0 0 1 0vsH Hµ µ µ µ: = : ≠  (1) 

based on a balanced RSS.  

In order to conduct a RSS group sequential test of the hypotheses in (1), we need 

to decide the ranked set size, k , the overall type I error of the test, α , the analysis 

times, 1 20 1Lt t t≤ ≤ ≤ ..., ≤  and the α -spending function, ( )tα  (or, in other words, 

the boundary type to be used). The analysis times are usually on information scale, in 

the sense that they represent the fraction of information collected up to the l th 

interim analysis out of the total information to be collected at the end of the study. At 
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the 1st interim analysis, 1l = , we select k  sets, each consisting of k  randomly 

selected subjects. The subjects in each set are then ranked with respect to the variable 

of interest without measuring the variable of interest. This can be done usually using 

any cost-free method, or using a concomitant variable. After ranking, data is collected 

only of the first subject (with smallest rank) of the first set, the 2nd smallest in the 

second set, and the largest from the last set. Thus we obtain measurements of the 

outcome [ ]1rx  for 1r k= ,..., . This operation is then repeated 1m  times (cycles) until 

the sample size required to conduct the first interim analysis is obtained i.e. 1 1n km= . 

At this point, a statistic 1Z  is computed, based on the sample 1n  collected thus far and 

the null hypothesis is rejected if 11 cZ > , where 1c  is critical value to be computed by 

numerical integration as explained later. At the l th interim analysis, 2l L= ,..., , we 

repeat the above operation by randomly selecting k  sets of k  subjects and perform 

the RSS method. This operation is then repeated 1( )l lm m −−  times (cycles), for lm  

such that the cumulative sample size at the l th interim analysis is l ln km= . Using 

the observations collected thus far, [ ]r jx  for 1r k= ,...,  and 1 lj m= ,..., , we compute 

the test statistic lZ  using  equation (2) below  and reject the null hypothesis and stop 

testing if ll cZ > , where lc  is computed recursively from equation (7). At the last 

interim analysis, L , when the sample recruited is RSS
L LN km= , if still LL cZ > , 

then we stop testing and fail to reject 0H .  

We notice here that we are not requiring equal group sizes. In other words, 

collecting the same sample size between each two consecutive interim analysis is not 

a requirement. Only the ranked set size, k , must be fixed over all analysis times, 

whereas the sample size at each interim analysis can vary, because the number of 

cycles, 1( )l lm m −−  is free.  

In this manuscript, we use the sequence of test statistics 1 2( )LZ Z Z, , ...,  given by  

 

 0
2 /ˆ

rss
l

l
l l

xZ
m
µ

τ

−
= ,  (2) 

where [ ]1 1

1 lk mrss
l r jr j

l

xx m k = =
= ∑ ∑ , 2 2

[ ]1ˆ ˆ
k

l r lrτ σ=
= ,∑  and 2

[ ]ˆ r lσ  is the estimated variance 

of the r th order statistic for a sample of size k  see (Chen et al. (2004)),  



 5

 22
[ ][ ] [ ]

1

1 ( )ˆ
lm

r lr l r j
jl

x xmσ
=

= − ,∑  (3) 

 [ ] [ ]
1

1 lm

r l r j
jl

xx m =

= .∑  

 

Notice that these estimators are all based on the cumulative data up to the l th interim 

analysis.  

The following result allows us to use the Brownian motion approximation so that 

the usual group sequential boundaries of Pocock (1977), O’Brien and Fleming (1979) 

and boundaries based on the α -spending function approach of Lan and DeMets 

(1983) can be adopted.  

Theorem 1.  Suppose the variance of the population, 2σ , is finite, and the ranking 

mechanism is consistent (Chen et al. (2004)), i.e.,  

 [ ]
1

1 k

r
rk

µ µ
=

= ∑  (4) 

then,  

 ( ) 1
1

1

( ) ( )( ) as  and D lL
L L l

LL

mB t B tZ Z m
mt t

λ, , ⎯⎯→ , , , →∞ → < ∞,K K  

where ( )lB t  is a standard Brownian motion computed at time lt .  

Proof. Since 2ˆlτ  is a consistent estimator of 2τ  as lm →∞ , by Slutsky’s theorem 

(Lehmann (1999)), all we need is to show that this result is true for the vector 

1 2( )L L L Lm m m m
LS S S= , ,...,S , where  

 0
2

.
/

L

rss
m l
l

l

xS
m
µ

τ

−
=  (5) 

 

This, in turn, amounts to showing that LmS  has asymptotically multivariate normal 

with mean zero and covariance matrix with the ( )i j th,  element given by j it t/  for 

j i≤ . To this end, first we notice that, because of (4), LmS  can be re-written as  

 L L Lm m m=S C V ,   

where 1 2( )L L L Lm m m m
LV V V= , ,...,V is a random vector  whose components are mutually 

independent and each is a standardized sum of i.i.d random variables,  
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1

2
11

1 ,
( )

l
L

l

m
m

l j
j ml l

V y
m m τ −= +−

=
−

∑  

and 

 0
[ ] [ ]

1

1 ( )
k

j r j r
r

y x
k

µ
=

= −∑  (6) 

are independent random variables with [ ] 0jE Y =  and  

 2
[ ]2

1

1( )
k

j r
r

Var Y
k

σ
=

= ∑  

with 2
[ ] [ ]( )r rVar Xσ =  and 0

[ ] [ ] 0[ ]r rE X Hµ = | .  It can be shown that  

 
2

2 2 0 2
[ ] 02

1

1 1 ( )
k

r
rk k k

στ σ µ µ
=

= − − ≤∑  

where 2 ( )Var Xσ = . Therefore, by the assumption of finiteness of 2σ , it also follows 

that, 2τ < ∞  for any fixed k . Thus, as and l Lm m →∞ , by the standard central limit 

theorems, we have that Lm D
l lV Z⎯⎯→ , a standard normal random variable for all 

1 2l L= , ,..., . Hence, Lm D⎯⎯→V Z , where Z  has L -variate standard normal 

distribution with identity covariance matrix. On the other hand, LmC  is a L L×  

matrix with elements  

 

1 2 1 2 1 22
1 1 1

2

( ) ( ) ( )
L j j j L j L j jm L

i j i j
i i L i

m m I I I I t t
C C

m I I t
τ

τ

/ / /⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟, ,⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− / − / −
= = → =

/
 

for i j≥  and zero otherwise. Here we are assuming that analysis times are limits of 

the information fractions, i.e., 
2

2
j

j L j
L

m
I I t

m
τ
τ

= / → . Thus, by multivariate Slutsky’s 

theorem, we can assert that L Lm m D L⎯⎯→C V C Z  with 

( ) ( )( ) /L L L t
j i i j

Cov t t⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠ ,

= =C Z C C  and hence, the desired result follows.  

The group sequential boundaries of the study can now be computed by using 

common software or tables available from Jennison and Turnbull (2000). In 

particular, the boundaries can be computed recursively through an α -spending 

function, ( )tα . In general, the function ( )tα  determines the cumulative portion of the 

overall type I error that has been spent on or prior to the l th interim analysis and, 

therefore, it is a nondecreasing function such that (0) 0α =  and (1)α α=  (see Lan and 

DeMets (1983)). The boundaries, 1 2 Lc c c, , ,K , for monitoring the lZ  statistic at the 
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interim analysis times 1 Lt t, ,K  and for the hypotheses in (1) can be computed from 

the equations  

 1
1 1 1 0 1 1

1

( )( ) { } 2(1 ( ))B tt P Z c H P c c
t

α
⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

= | |≥ | ≈ ≥ = −Φ  

 1 1 1 1 0
1

( ) { }
l

l i i i i
i

t P Z c Z c Z c Hα − −
=

= | |< , ,| |< ,| |≥ |∑ K  

 1 1
1 1

1 1 1

( ) ( ) ( )l
i i

i i
i i i

B t B t B tP c c c
t t t

⎧ ⎫
⎪ ⎪⎪ ⎪−
⎨ ⎬−⎪ ⎪

= ⎪ ⎪−⎩ ⎭

≈ < , , < , ≥ ,∑ K  (7) 

 

where 2 3l L= , , ,K .  

2.2. Efficiency of the RSS group sequential in the normal case 

In planning for a group sequential study, we need to determine the sample size needed 

to attain certain pre-specified power. To this end, we assume that the cumulative 

information up to the l th interim analysis for the RSS group sequential procedure is 
2

l l lI m τ= / , i.e., the inverse of the variance of the estimator rss
lx . As before, the 

information times are assumed to be l l Lt I I≈ / . Thus, in designing a RSS group 

sequential study, we compute the drift of the Brownian motion, Ld I δ= , where 

0 aδ µ µ=| − | , under a presumed alternative hypothesis a aH µ µ: = . Such a drift can 

be obtained by an obvious modification of the integrals in (7) based only on the power 

specification (1 β− ) and without the knowledge of the alternative value or even the 

maximum information at the end of the study.  

Once the drift has been computed, the required sample size is obtained by 

specifying the relationship between information, variance, sample size, and drift. In 

the RSS case, such a relationship is given by  

 
2

1 2 0 2
[ ] 02

1

1 1 1 ( )
k

L r
rL L

I
m m k k
τ σ µ µ

⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎢ ⎥=⎣ ⎦

= = − −∑  (8) 

where [ ]rµ  and 0
[ ]rµ , respectively, are the mean of the r th order statistic based on 

sample of size k  and its value under the null hypothesis in (1). Computing the 

expected value of the r th order statistic is, therefore, required for obtaining sample 

size through the drift parameter. On the other hand, if we assume normality, by using 

the well known relationship between moments of order statistics of the normal and 
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their standard normal counterparts, the above equation simplifies to  

 
2 2

1
L k

L L

I
m km
τ σ γ− = = , (9) 

where  

 2
[ ]

1

11
k

k z r
rk

γ µ
=

= − ∑  

and [ ]z rµ  is the mean of the r th standard normal order statistic based on a sample of 

size k  , 

 1[ ( )] [1 ( )] ( ) .
( 1) ( )

r k rk z z z z dz
r k r

ϕ
∞ − −

−∞

!
Φ −Φ

− ! − !∫  (10) 

The values of this integral are tabulated by many authors, see for example Harter and 
Balakrishnan (1996). The factor kγ  is such that 0 1kγ≤ ≤ , 1 1γ = , and 0kγ →  as 
k →∞ . The first few values of the integral are reported in Table1. 
 
 

Table 1  

kγ  for different values of  k  

k 1 2 3 4 5 6 7 8 9 10 

kγ  1.0000 0.6817 0.5225 0.4261 0.3610 0.3139 0.2782 0.2501 0.2273 0.2086 

 

Thus, the relationship between sample size required by the RSS group sequential 

design and that required by the usual SRS group sequential designs is  

 
2 2

2
RSS SRS

L k L k
dN Nσ γ γ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= =  (11) 

where SRS
LN  is the maximum sample size required by a SRS group sequential for a 

fixed power (1 β− ) and hence, a fixed drift δ .  

Therefore, the maximal sample size required by an RSS group sequential is kγ  

times smaller than that required by an equally powerful group sequential procedure 

based on the usual SRS scheme. If we use RSS group sequential procedure 

with 3k = , we obtain almost 52.25% reductions in the sample required by equally 

powerful group sequential procedures based on SRS. It is also clear that a RSS group 

sequential procedure with 3k =  for testing 0H  in (1) can be designed by simply 

using the design of an equivalent, in power, SRS group sequential design and then 



 9

recruiting only half of the maximal sample required by such a design.  

The extra subjects that we need to assess for ranking purposes are compensated by 

the saving attained through the RSS design in terms of the actual number of subjects 

recruited and measured. To be more specific, if a SRS group sequential with a certain, 

pre-fixed, power, type I error, and L interim analysis, requires a sample of SRS
LN  

subjects to be recruited and measured, then for an equivalent RSS group sequential 

procedure all we need to recruit and measure is RSS SRS
L k LN Nγ=  fraction of the 

subjects; However, ranking of an extra RSS SRS
T k LN k Nγ=  is required (by means of a 

concomitant variable, such as a biomarker, age, or a cheap variable such as blood 

pressure). For example, if SRS group sequential requires 200SRS
LN = , then for an RSS 

with 2k = , we need to rank 273RSS
TN =  subjects but recruit and measure the 

outcome only for 136RSS
LN =  subjects, whereas for 3k = , these numbers are 314 

and 105, respectively. This is an enormous saving in terms of maximal sample as well 

as average sample required for detecting the alternative hypotheses.  

 

3. Two-sample Extensions 

In the case of two-populations, one would independently obtain two RSS samples, 

denoted by 1[ ]r jx  and 2[ ]r jx , respectively.  

The extension of the results in earlier sections, to the case of two-sample 

problems, is quite straight forward. Here we propose an RSS scheme whereby an 

independent balanced RSS sample is drawn from each population as described above 

in the one-sample case. Thus, let ilm  be the cumulative number of cycles by the lth  

interim analysis from the two populations being compared, where 1 2i = ,  and 

1 2l L= , ,...,  as before. The sequence of RSS-based test statistics for testing  

 0 1 2 1 20 0aH Hµ µ µ µ: − = ; : − ≠  

can be written as  

 1 2

2 2
1 21 2

,
/ /ˆ ˆ

rss rss
l l

l
l ll l

x xZ
m mτ τ

−
=

+
 (12) 

where the various quantities are defined as in the one-sample case. Again, we can 

prove that  
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 1
1

1

( ) ( )( ) ( ),Lm D L
L

L

B t B tZ Z
t t

= ,..., ⎯⎯→ , ,Z K  

as 1 21
1 2 1 2

2 1 2
,  and , ,  .l lL

L L L l l
L L L

m mmm m m m mλ λ λ→∞ → < ∞ → < ∞ → < ∞  

This can be accomplished again, by proving the result for the vector 

1 2( ) (1)L L L L Lm m m m m
L pS S S o= , ,..., = +S Z . Such vector can be represented as  

 1 1 2 2
L L L L Lm m m m m= − ,S C V C V  

where Lm
iV  for 1 2i = ,  is a vector of L  mutually independent random variables of the 

form  

 
( 1)

1 2

2
( 1)

1
( )

il
L

i l

m
m

il ij
j mil i l i

V y
m m τ

−

/⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ =−⎝ ⎠

= ,
− ∑  

Lm
iC  are L L×  matrices with elements  

 
( )1 2

2
( 1)

1 2( ) 2 2
1 1 2 2

( )

/ /
L

iil i lm
i l l

il l l

m m
C

m m m

τ

τ τ

′ ′

′

/

−

/, ⎛ ⎞
⎜ ⎟
⎝ ⎠

−
=

+
 

for l l′ ≤  and zero otherwise, and ijy  as defined in (6). Assume that the design is 

information-balanced in the sense that the information accrued in the two treatment 

arms at each interim analysis are equal. That is,  

 2 for 1, 2il
il l

i

mI I i
τ

= = = .  

Therefore, we can easily see that  

 

 

1 2 1 22 1 2
( 1) ( 1) ( 1)

1 2( ) ( )2 2
1 2 2

(( ) ) / /1 1 1
2 2 2

L
i L lil i l il i l l lm L

i l l l l
l L lil il l

m m I I I I t t
C C

I I tm m m

τ

τ τ

′ ′ ′ ′ ′ ′

′ ′

/ // ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟

/ ⎜ ⎟ ⎜ ⎟, ,⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − −
= = → =

/+
     (13) 

 

as iLm →∞ . The vectors, Lm
ilV  converge in distribution to independent multivariate 

standard normal variables, 1Z  and 2Z , as in the one-sample case and hence, by 

multivariate Slutsky’s theorem, we have  

1 1 2 2 1 2
1 1
2 2

L L L L Lm m m m m D L L= − ⎯⎯→ − .S C V C V C Z C Z  

Therefore, the asymptotic distribution of LmS  is multivariate standard normal with 
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covariance matrix 1 1( ) ( ) ( )
2 2

L L T L L T L L T= + =Σ C C C C C C  whose elements are 

/ ll l l
t tσ ′ ′,

=  for l l′ ≤ .  

4. Numerical Studies 

4.1. Simulation Studies 

Here we consider fixed total sample sizes of 60 120 180 380 600N = , , , , , set sizes 

2 3k = , , number of interim analysis 1 2 4 5 10L = , , , , , type I error 0 05α = .  with 

Pocock and O’Brien-Fleming boundaries. The hypotheses in (1) were considered with 

0 0 1 0 15 0 2 0 25µ = , . , . , . , .  and normal distributions with 2 1σ = . In each scenario, we 

have used 410  Monte Carlo replications. The ranking was based on concomitant 

variable y  which is also normally distributed and whose correlation with the variable 

of interest x  was varied over 0 0 25 0 50 0 75 1ρ = , . , . , . , . To conserve space, we only 

reported results for O’Brien-Fleming boundaries and 0 0 1 0 2µ = , . , .  (Tables 2 - 7). 

From Tables 2 & 3, we can see that at large total sample sizes, both SRS and RSS 

methods maintain their nominalα . On the other hand, for small samples, such as 

60N = , and small number of interim analysis, the RSS group sequential methods 

maintain their type I errors while their SRS counterparts have inflated type errors. 

When the number of analysis is large ( 1L = ) relative to the total sample size, then the 

RSS methods are more inflated than their SRS counterparts. The type I errors are not 

much affected by changing correlation with the concomitant variable. This argument 

carries on for both ranked set sizes 2 3k = , , although the case 3k =  is slightly better 

in maintaining type I errors.  

From Tables 4-7, we see that the RSS group sequential methods have substantially 

higher powers than their SRS counterparts and require, on average, less sample size to 

detect the same alternatives. The power gain by using RSS can reach up to 28% (see 

Table 5 with 3k = , 5L =  and 180N = , 1ρ = ). At low correlations such as 

0 25ρ = . , the gain in power and average sample size is not substantial. When 

correlation is zero (not reported here), the two methods are the same (as expected).   

The simulations are also in support of the arguments in Section 2, whereby we 

stated that the RSS group sequential methods would require only kγ  fraction of the 
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total sample size required by an equally powerful SRS group sequential procedure. 

This can be seen by examining powers of the RSS with 180N =  and SRS with 

360N = . These samples are approximately differing by 3 0 5225γ = .  and we can see 

that the powers of the RSS and SRS are quite close at these sample sizes, which 

confirms equation (11).  

4.2. Clinical trial example 

 In this section, we illustrate the proposed methods by using a  data set from the 

well known ACGT 320 controlled clinical trial (see Hammer et. al (1997)). This trial 

compared two treatments ( namely, three-drug combination of IDV+ZDV+3TC 

(treatment 1)  vs two-drug combination of ZDV+3TC (treatment 2)) in persons with 

HIV.  The primary outcome was survival end-point (until development of AIDS or 

death). However, an important secondary end-point was CD4 count of the patients at 

weeks: 0(baseline), 4, 8, 24 and 40. Here found that for the CD4 end-point, the 

correlations between counts at baseline and week 4 were quite strong (
1

0.80ρ =  and 

1
0.86ρ = , respectively, under treatments 1 & 2). Thus we used the CD4 counts at 

week 0 as our concomitant variable. A SRS-based  O'Brien-Fleming design with L=4, 

significance level of 0.05 and power of 85% would require 420 patients on each arm 

in order to detect a minimum difference equal to the observed absolute difference of, 

approximately, 19 cells/mm3 between the CD4 counts of the two treatment groups at 

week 4 as reported in Hammer et. al. (1997). By using simulations we , it turns out 

that an equally powerful O'Brien-Fleming RSS design with k=3 would require an  

effective total sample size of 300 whereas if k=2 it would require 340. 

 

Using such designs, the available data set of about 532 patients on each arm, and 

the Z-statistic in equation (12), we monitored the above trial and found that the trial 

stops at interim analysis 2 under all designs. The different designs, their Z-statistics 

and corresponding monitoring boundaries as well as the sample size on each arm at 

the time the trials stopped are reported in Table 8.  In summary, the RSS designs 

would enjoy the same power, but save as much as half of the required sample size. 
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5. Conclusions 

In this manuscript, we proposed group sequential testing procedures based ranked set 

sampling for one- and two-population mean comparisons. We have shown 

analytically and by simulations that the proposed methods are more efficient than the 

usual group sequential methods based on simple random sample. We illustrated how 

the proposed methods could be applied in real-life by using data from HIV clinical 

trial example.  
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Table 2. Simulated type I error for RSS, Prss , and percentage difference in type I 
errors between RSS and SRS, Pd , for total samples N , interim analysis, L , set size 

2k = , correlation with concomitant variable, ρ , under O’Brien-Fleming boundaries. 

  ρ    
  0 00.   0 25.   0 5.   0 75.   1   

N  L  Prss  Pd  Prss Pd  Prss  Pd  Prss  Pd  Prss  Pd   
60  1  0.0534  -0.3%  0.0551 -0.1% 0.0541 -0.2% 0.0544 -0.2%  0.0544  -0.2%  

 2  0.0593  0.3%  0.0590 0.3%  0.0559 -0.1% 0.0571 0.1%  0.0568  0.0%  
 4  0.0600  -0.1%  0.0588 -0.2% 0.0617 0.1%  0.0606 0.0%  0.0604  0.0%  
 5  0.0614  0.1%  0.0596 -0.1% 0.0600 -0.1% 0.0595 -0.1%  0.0596  -0.1%  
 10  0.0625  0.1%  0.0633 0.2%  0.0635 0.2%  0.0644 0.3%  0.0654  0.4%  

120  1  0.0529  -0.1%  0.0528 -0.1% 0.0529 -0.1% 0.0534 -0.1%  0.0519  -0.2%  
 2  0.0544  0.1%  0.0523 -0.1% 0.0519 -0.1% 0.0513 -0.2%  0.0510  -0.2%  
 4  0.0558  0.2%  0.0550 0.2%  0.0541 0.1%  0.0546 0.1%  0.0549  0.2%  
 5  0.0529  -0.3%  0.0546 -0.2% 0.0562 0.0%  0.0528 -0.3%  0.0534  -0.3%  
 10  0.0551  0.0%  0.0548 0.0%  0.0543 -0.1% 0.0568 0.2%  0.0551  0.0%  

180  1  0.0508  -0.1%  0.0511 0.0%  0.0509 0.0%  0.0511 0.0%  0.0503  -0.1%  
 2  0.0501  -0.4%  0.0538 0.0%  0.0512 -0.3% 0.0525 -0.2%  0.0549  0.1%  
 4  0.0537  0.1%  0.0530 0.1%  0.0539 0.2%  0.0524 0.0%  0.0524  0.0%  
 5  0.0545  0.5%  0.0531 0.3%  0.0523 0.2%  0.0545 0.5%  0.0526  0.3%  
 10  0.0518  -0.1%  0.0546 0.2%  0.0535 0.1%  0.0531 0.0%  0.0540  0.1%  

360  1  0.0518  0.0%  0.0510 -0.1% 0.0526 0.0%  0.0507 -0.1%  0.0509  -0.1%  
 2  0.0524  0.2%  0.0511 0.1%  0.0517 0.1%  0.0506 0.0%  0.0515  0.1%  
 4  0.0520  0.1%  0.0524 0.1%  0.0507 0.0%  0.0528 0.2%  0.0507  0.0%  
 5  0.0501  0.0%  0.0515 0.2%  0.0506 0.1%  0.0520 0.2%  0.0510  0.1%  
 10  0.0512  0.0%  0.0524 0.1%  0.0516 0.0%  0.0507 -0.1%  0.0518  0.1%  

600  1  0.0504  0.2%  0.0515 0.3%  0.0503 0.1%  0.0515 0.3%  0.0505  0.2%  
 2  0.0506  0.0%  0.0516 0.1%  0.0490 -0.2% 0.0519 0.1%  0.0503  -0.1%  
 4  0.0493  -0.1%  0.0519 0.1%  0.0525 0.2%  0.0514 0.1%  0.0522  0.2%  
 5  0.0502  0.1%  0.0524 0.3%  0.0503 0.1%  0.0499 0.0%  0.0511  0.1%  
 10  0.0503  0.3%  0.0507 0.4%  0.0513 0.4%  0.0519 0.5%  0.0515  0.5%  
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Table 3. Simulated type I error for RSS, Prss , and percentage difference in type I 
errors between RSS and SRS, Pd , for total samples N , interim analysis, L , set size 

3k = , correlation with concomitant variable, ρ , under O’Brien-Fleming boundaries. 

  ρ    
  0 00.   0 25.   0 5.   0 75.   1   

N  L  Prss  Pd  Prss Pd  Prss  Pd  Prss  Pd  Prss  Pd   
60  1  0.0553  -0.1%  0.0532 -0.3% 0.0549 -0.1% 0.0558 0.0%  0.0566  0.0%  

 2  0.0584  0.2%  0.0584 0.2%  0.0579 0.1%  0.0576 0.1%  0.0571  0.1%  
 4  0.0604  0.0%  0.0612 0.0%  0.0611 0.0%  0.0587 -0.2%  0.0598  -0.1%  
 5  0.0620  0.1%  0.0594 -0.1% 0.0601 -0.1% 0.0614 0.1%  0.0596  -0.1%  
 10  0.0699  0.9%  0.0696 0.8%  0.0698 0.9%  0.0698 0.9%  0.0689  0.8%  

120  1  0.0524  -0.2%  0.0524 -0.2% 0.0519 -0.2% 0.0526 -0.1%  0.0519  -0.2%  
 2  0.0533  0.0%  0.0545 0.1%  0.0554 0.2%  0.0522 -0.1%  0.0555  0.2%  
 4  0.0551  0.2%  0.0553 0.2%  0.0554 0.2%  0.0542 0.1%  0.0540  0.1%  
 5  0.0537  -0.3%  0.0544 -0.2% 0.0539 -0.2% 0.0555 -0.1%  0.0540  -0.2%  
 10  0.0548  0.0%  0.0551 0.0%  0.0556 0.0%  0.0557 0.1%  0.0546  -0.1%  

180  1  0.0508  -0.1%  0.0522 0.1%  0.0501 -0.1% 0.0524 0.1%  0.0531  0.2%  
 2  0.0510  -0.3%  0.0533 -0.1% 0.0518 -0.2% 0.0518 -0.2%  0.0519  -0.2%  
 4  0.0524  0.0%  0.0530 0.1%  0.0527 0.0%  0.0513 -0.1%  0.0534  0.1%  
 5  0.0523  0.2%  0.0535 0.4%  0.0517 0.2%  0.0535 0.3%  0.0531  0.3%  
 10  0.0537  0.1%  0.0525 0.0%  0.0527 0.0%  0.0526 0.0%  0.0543  0.2%  

360  1  0.0505  -0.2%  0.0507 -0.1% 0.0506 -0.2% 0.0503 -0.2%  0.0507  -0.2%  
 2  0.0515  0.1%  0.0526 0.2%  0.0500 -0.1% 0.0511 0.1%  0.0519  0.1%  
 4  0.0524  0.1%  0.0516 0.0%  0.0538 0.3%  0.0514 0.0%  0.0514  0.0%  
 5  0.0526  0.3%  0.0513 0.1%  0.0504 0.1%  0.0491 -0.1%  0.0518  0.2%  
 10  0.0529  0.2%  0.0530 0.2%  0.0514 0.0%  0.0513 0.0%  0.0500  -0.1%  

600  1  0.0514  0.3%  0.0502 0.1%  0.0500 0.1%  0.0501 0.1%  0.0497  0.1%  
 2  0.0502  -0.1%  0.0495 -0.2% 0.0507 0.0%  0.0505 -0.1%  0.0502  -0.1%  
 4  0.0530  0.3%  0.0517 0.1%  0.0501 0.0%  0.0503 0.0%  0.0522  0.2%  
 5  0.0511  0.1%  0.0506 0.1%  0.0520 0.2%  0.0493 0.0%  0.0505  0.1%  
 10  0.0495  0.3%  0.0497 0.3%  0.0512 0.4%  0.0503 0.4%  0.0498  0.3%  
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Table 4. Simulated power of group sequential RSS method, Prss , percentage power 
difference between RSS and SRS dP , difference of average sample sizes between 
RSS and SRS as percentage of the total sample, eff, total sample size N , correlation 
with the concomitant variable ρ , number of interim analysis L , set size, 2k = , and 
alternative 0 1aH µ: = .  under O’Brien-Fleming boundaries. 

 ρ    

 0 25.  0 5.  0 75.  1 
N L Prss  Pd  eff Prss Pd  eff Prss  Pd  eff Prss  Pd  eff 
60  1  0.130  0%  0%  0.134 1%  0%  0.145 2%  0%  0.161  4%  0%   

 2  0.130  0%  0%  0.133 1%  0%  0.147 2%  0%  0.163  4%  0%   
 4  0.130  0%  0%  0.134 0%  0%  0.150 2%  1%  0.164  4%  1%   
 5  0.134  0%  0%  0.137 1%  0%  0.143 1%  0%  0.164  3%  1%   
 10  0.135  0%  0%  0.141 0%  0%  0.151 1%  0%  0.170  3%  1%   
120 1  0.201  0%  0%  0.210 1%  0%  0.228 3%  0%  0.266  7%  0%   
 2  0.201  0%  0%  0.207 1%  0%  0.231 3%  0%  0.268  7%  1%   
 4  0.200  0%  0%  0.208 1%  0%  0.229 3%  1%  0.268  7%  1%   
 5  0.199  0%  0%  0.210 1%  0%  0.224 3%  1%  0.264  7%  1%   
 10  0.199  1%  0%  0.210 2%  0%  0.227 3%  1%  0.262  7%  2%   
180 1  0.276  1%  0%  0.288 2%  0%  0.321 5%  0%  0.366  10%  0%   
 2  0.274  0%  0%  0.285 1%  0%  0.318 4%  0%  0.371  10%  1%   
 4  0.268  0%  0%  0.284 2%  0%  0.311 4%  1%  0.365  10%  2%   
 5  0.270  1%  0%  0.284 2%  0%  0.312 5%  1%  0.363  10%  2%   
 10  0.268  0%  0%  0.279 2%  0%  0.310 5%  1%  0.363  10%  3%   
360 1  0.478  1%  0%  0.513 4%  0%  0.550 8%  0%  0.634  16%  0%   
 2  0.481  1%  0%  0.500 3%  0%  0.551 8%  1%  0.631  16%  3%   
 4  0.474  1%  0%  0.491 2%  1%  0.545 8%  2%  0.625  16%  4%   
 5  0.473  1%  0%  0.495 3%  1%  0.546 8%  2%  0.622  16%  5%   
 10  0.464  0%  0%  0.494 3%  1%  0.538 8%  2%  0.617  16%  5%   
600 1  0.696  1%  0%  0.721 3%  0%  0.775 9%  0%  0.843  15%  0%   
 2  0.697  1%  0%  0.721 4%  1%  0.768 9%  2%  0.839  16%  5%   
 4  0.686  1%  0%  0.716 4%  1%  0.762 8%  3%  0.835  16%  7%   
 5  0.682  0%  0%  0.711 3%  1%  0.760 8%  3%  0.834  16%  7%   
 10  0.680  1%  0%  0.707 4%  2%  0.756 9%  4%  0.827  16%  8%   
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Table 5. Simulated power of group sequential RSS method, Prss , percentage power 
difference between RSS and SRS dP , difference of average sample sizes between 
RSS and SRS as percentage of the total sample, eff, total sample size N , correlation 
with the concomitant variable ρ , number of interim analysis L , set size, 3k = , and 
alternative 0 1aH µ: = .  under O’Brien-Fleming boundaries. 

 ρ    

 0 25.  0 5.  0 75.  1 
N L Prss  Pd  eff Prss Pd  eff Prss  Pd  eff Prss  Pd  eff 
60  1  0.129  0%  0%  0.137 1%  0%  0.156 3%  0%  0.195  7%  0%   

 2  0.132  1%  0%  0.138 1%  0%  0.156 3%  0%  0.195  7%  1%   
 4  0.134  0%  0%  0.139 1%  0%  0.158 3%  1%  0.196  7%  1%   
 5  0.134  0%  0%  0.139 1%  0%  0.158 3%  1%  0.200  7%  1%   
 10  0.141  0%  1%  0.151 1%  1%  0.166 3%  1%  0.200  6%  2%   
120 1  0.202  0%  0%  0.217 2%  0%  0.252 5%  0%  0.330  13%  0%   
 2  0.202  1%  0%  0.218 2%  0%  0.252 6%  1%  0.332  14%  1%   
 4  0.204  1%  0%  0.220 2%  0%  0.249 5%  1%  0.325  13%  2%   
 5  0.203  1%  0%  0.216 2%  0%  0.247 5%  1%  0.327  13%  3%   
 10  0.199  1%  0%  0.214 2%  0%  0.247 5%  1%  0.321  13%  3%   
180 1  0.278  1%  0%  0.304 4%  0%  0.351 8%  0%  0.456  19%  0%   
 2  0.275  0%  0%  0.296 2%  0%  0.352 8%  1%  0.454  18%  2%   
 4  0.273  1%  0%  0.292 3%  0%  0.342 8%  1%  0.450  18%  4%   
 5  0.271  1%  0%  0.293 3%  1%  0.340 8%  2%  0.447  18%  4%   
 10  0.269  1%  0%  0.292 3%  1%  0.340 8%  2%  0.445  18%  5%   
360 1  0.488  2%  0%  0.527 5%  0%  0.601 13%  0%  0.746  27%  0%   
 2  0.485  1%  0%  0.520 5%  1%  0.598 13%  2%  0.744  27%  5%   
 4  0.477  1%  0%  0.512 4%  1%  0.593 12%  3%  0.738  27%  8%   
 5  0.474  1%  0%  0.513 5%  1%  0.592 13%  4%  0.733  27%  9%   
 10  0.473  1%  0%  0.510 5%  1%  0.585 12%  4%  0.733  27%  10%   
600 1  0.702  1%  0%  0.744 5%  0%  0.815 13%  0%  0.923  23%  0%   
 2  0.700  2%  0%  0.738 6%  1%  0.816 13%  4%  0.921  24%  10%   
 4  0.688  1%  0%  0.728 5%  2%  0.811 13%  5%  0.918  24%  13%   
 5  0.689  1%  1%  0.728 5%  2%  0.808 13%  6%  0.918  24%  13%   
 10  0.682  1%  0%  0.726 6%  2%  0.802 13%  6%  0.915  25%  14%   
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Table 6. Simulated power of group sequential RSS method, Prss , percentage power 
difference between RSS and SRS dP , difference of average sample sizes between 
RSS and SRS as percentage of the total sample, eff, total sample size N , correlation 
with the concomitant variable ρ , number of interim analysis L , set size, 2k = , and 
alternative 0 2aH µ: = .  under O’Brien-Fleming boundaries. 

 ρ    

 0 25.  0 5.  0 75.  1 
N L Prss  Pd  eff Prss Pd  eff Prss  Pd  eff Prss  Pd  eff 
60  1  0.358  1%  0%  0.373 3%  0%  0.406 6%  0%  0.467  12%  0%   

 2  0.350  0%  0%  0.369 2%  0%  0.403 6%  1%  0.474  13%  1%   
 4  0.351  1%  0%  0.368 2%  1%  0.405 6%  1%  0.466  12%  3%   
 5  0.351  1%  0%  0.371 3%  1%  0.402 6%  1%  0.467  12%  3%   
 10  0.351  1%  0%  0.370 3%  1%  0.403 6%  2%  0.469  12%  4%   
120 1  0.599  1%  0%  0.626 3%  0%  0.676 8%  0%  0.755  16%  0%   
 2  0.598  1%  0%  0.626 3%  1%  0.674 8%  2%  0.754  16%  4%   
 4  0.592  1%  0%  0.620 4%  1%  0.669 8%  3%  0.746  16%  6%   
 5  0.593  1%  0%  0.616 3%  1%  0.669 9%  3%  0.746  16%  6%   
 10  0.587  1%  0%  0.613 4%  1%  0.663 9%  3%  0.744  17%  7%   
180 1  0.775  1%  0%  0.796 3%  0%  0.845 8%  0%  0.902  14%  0%   
 2  0.770  1%  0%  0.795 3%  1%  0.843 8%  3%  0.899  14%  6%   
 4  0.765  1%  0%  0.789 3%  1%  0.831 7%  4%  0.895  14%  8%   
 5  0.763  1%  0%  0.785 3%  1%  0.829 7%  4%  0.893  14%  8%   
 10  0.759  1%  1%  0.783 3%  2%  0.828 8%  5%  0.891  14%  9%   
360 1  0.970  0%  0%  0.977 1%  0%  0.987 2%  0%  0.996  3%  0%   
 2  0.969  0%  0%  0.977 1%  2%  0.987 2%  6%  0.995  3%  11%   
 4  0.967  0%  0%  0.974 1%  2%  0.986 2%  5%  0.995  3%  9%   
 5  0.967  0%  0%  0.975 1%  2%  0.985 2%  5%  0.995  3%  9%   
 10  0.963  0%  0%  0.973 1%  2%  0.985 2%  5%  0.995  3%  10%   
600 1  0.999  0%  0%  0.999 0%  0%  1.000 0%  0%  1.000  0%  0%   
 2  0.999  0%  0%  0.999 0%  2%  1.000 0%  5%  1.000  0%  8%   
 4  0.999  0%  0%  0.999 0%  2%  1.000 0%  4%  1.000  0%  7%   
 5  0.998  0%  0%  0.999 0%  2%  1.000 0%  4%  1.000  0%  8%   
 10  0.998  0%  0%  0.999 0%  2%  1.000 0%  4%  1.000  0%  8%   
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Table 7. Simulated power of group sequential RSS method, Prss , percentage power 
difference between RSS and SRS dP , difference of average sample sizes between 
RSS and SRS as percentage of the total sample, eff, total sample size N , correlation 
with the concomitant variable ρ , number of interim analysis L , set size, 3k = , and 
alternative 0 2aH µ: = .  under O’Brien-Fleming boundaries. 

 ρ    

 0 25.  0 5.  0 75.  1 
N L Prss  Pd  eff Prss Pd  eff Prss  Pd  eff Prss  Pd  eff 
60  1  0.355  1%  0%  0.382 4%  0%  0.447 10%  0%  0.576  23%  0%   

 2  0.355  1%  0%  0.384 4%  1%  0.445 10%  1%  0.571  22%  3%   
 4  0.356  1%  0%  0.383 4%  1%  0.443 10%  2%  0.572  23%  6%   
 5  0.352  1%  0%  0.383 4%  1%  0.441 10%  2%  0.575  23%  6%   
 10  0.359  1%  1%  0.384 4%  1%  0.440 10%  3%  0.571  23%  8%   
120 1  0.605  1%  0%  0.649 6%  0%  0.727 13%  0%  0.857  26%  0%   
 2  0.604  1%  0%  0.642 5%  1%  0.725 13%  3%  0.855  26%  8%   
 4  0.595  1%  0%  0.638 5%  2%  0.717 13%  5%  0.850  27%  11%   
 5  0.598  1%  0%  0.635 5%  2%  0.715 13%  5%  0.847  26%  11%   
 10  0.590  2%  1%  0.631 6%  2%  0.713 14%  6%  0.848  27%  13%   
180 1  0.778  2%  0%  0.814 5%  0%  0.878 12%  0%  0.960  20%  0%   
 2  0.772  1%  0%  0.814 5%  2%  0.878 12%  5%  0.958  20%  12%   
 4  0.766  1%  0%  0.808 5%  2%  0.871 11%  6%  0.957  20%  14%   
 5  0.763  1%  1%  0.806 5%  3%  0.873 12%  7%  0.954  20%  15%   
 10  0.761  1%  1%  0.803 5%  3%  0.864 11%  7%  0.956  21%  16%   
360 1  0.971  0%  0%  0.982 2%  0%  0.993 3%  0%  1.000  3%  0%   
 2  0.970  0%  1%  0.982 2%  3%  0.993 3%  9%  1.000  3%  18%   
 4  0.968  1%  1%  0.979 2%  3%  0.992 3%  8%  0.999  4%  15%   
 5  0.966  0%  1%  0.980 2%  3%  0.992 3%  8%  0.999  4%  15%   
 10  0.966  1%  1%  0.978 2%  3%  0.992 3%  8%  0.999  4%  16%   
600 1  0.999  0%  0%  0.999 0%  0%  1.000 0%  0%  1.000  0%  0%   
 2  0.999  0%  1%  1.000 0%  3%  1.000 0%  7%  1.000  0%  11%   
 4  0.999  0%  0%  0.999 0%  2%  1.000 0%  6%  1.000  0%  12%   
 5  0.998  0%  1%  0.999 0%  3%  1.000 0%  6%  1.000  0%  12%   
 10  0.999  0%  1%  0.999 0%  3%  1.000 0%  7%  1.000  0%  13%   

 

Table 8. Monitoring of the ACGT 320 trial by using equally spaced O'Brien-Fleming 
designs with L=4 analyses and 0.05α = , and power of 85%. 

Z-Statistic(sample size/treatment) Time Boundaries 
RSS(k=2) RSS(k=3) SRS 

1 4.048 1.05(85) 3.97(75) 2.61(105) 
2 2.862 3.33(170) 3.36(150) 3.452(210) 
3 2.337    
4 2.024    
 


